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ABSTRACT 

A wealth of high-quality Porites coral cores have been retrieved from the Mondu raised 

reefs on the north coast of Sumba, Indonesia. The main aim of this thesis was to explore 

the U-series geochronology and palaeoclimatologic significance of the oxygen isotope 

and carbon isotope signals in Sumba corals from the penultimate deglaciation 

(Termination II) and the Holocene. These corals provided the opportunity to investigate 

the history of important climate systems in the Indo-Pacific Warm Pool region, such as 

the El Niño-Southern-Oscillation (ENSO), the Asian-Australian Monsoon, and the 

Indonesian Throughflow. 

Multiple measurements of U-series isotopes in skeletal sub-samples within a single 

Porites coral were made to explore the diagenetic behaviour of U-series isotopes in 

fossil corals from the raised reefs of Sumba, Indonesia. Detailed analysis of two 

diagenetic stages and corresponding changes in U-series isotopic composition has 

revealed two distinct processes of U-series isotope diagenesis in this single coral colony. 

Both of them are different from those suggested before. The earlier process involved 

addition of allochthonous dissolved 234U and 238U together with addition of detrital 

non-radiogenic 230Th, while the later process was clearly connected to loss of 234U and 

238U occurring along to loss of detrital-bound 230Th. Locally radiogenic 230Th appears to 

have played an important role in maintaining a constant 234U/230Th when percolating 

groundwater with allochthonous U and a high 234U value entered the coral at the earlier 

stage. On the other hand, detritus-bound 230Th was critical to maintain a fixed 234U/230Th 

when percolating meteoric water dissolved coral skeletal U at the later-stage. The results 

suggest that a mechanism like diffusion or osmosis controlled the addition or loss of 

dissolved U and detrital Th in the coral by way of a solute concentration gradient. This 

mechanism explains the constant 234U/230Th ratios in situations involving either the 

addition or loss of U. Model correction ages could be determined for both processes and 

they yield essentially the same age of 133.6 ka for the early highstand of Termination II. 
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This detailed study serves to substantiate the isochron model, and provides insight into 

the way by which the 234U/230Th ratio can remain constant when U is added to or lost 

from corals during diagenesis. 

Initial U-series measurements on the Sumba corals demonstrated that reliable 

conventional 230Th ages could not always be obtained from Porites corals and other 

robust thick-walled coral species older than the Holocene. However, fifty-four 

measurements of the U/Th isotopic composition of corals from the same reefs, and 

sub-samples from a single coral colony, form two distinct groups on a 234U/238U – 

230Th/238U plot. Analysis of the 234U/238U – 230Th/238U plot shows that the data within 

the two groups comprise two parallel arrays of lines. The lines within the array 

associated with the older corals have larger slopes than the lines associated with the 

younger corals. Stratigraphic analysis demonstrates that the slopes of the lines reflect 

the burial/exposure history of the reefs and could serve to help determine the age of the 

reefs. 

An isochron model was used to determine corrected ages for most of the Mondu raised 

reefs. All of the corrected ages are consistent with the stratigraphic analysis carried out 

in this study based on detailed topographic surveys and field observations. The 

corrected ages for the Mondu raised coral reefs fall within marine isotope sub-stages 

5a-5e, early-stage highstands during Termination II and MIS 6, and a late-stage 

highstand during MIS 8. This study supports a near-constant uplift rate of 0.49 m/kyr in 

the Mondu area since ~260 ka (thousand years ago), even though the rate may have 

been slightly higher during MIS 5a and slightly lower during MIS 5c. 

This study demonstrates that the Sumba corals are excellent recorders of climate and 

ocean dynamics in the Indo-Pacific Warm Pool. The Sumba coral 18O has recorded the 

mean climate conditions of the warm pool and indicates that surface seawater was 

enriched in 18O by 0.3-0.5‰ during the mid-Holocene (3.7-5.7 ka), relative to the 

present time, despite the mid-Holocene sea surface temperature (SST) being within 

0.5oC of the modern SST. The Sumba coral records also show that the warm pool SST 
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was 2.4oC cooler (relative to the mid-Holocene) when the sea level was -18 m lower at 

134 ka during the early highstand of Termination II. It is likely that the seawater 18O 

value at that time was similar to the relatively high Holocene value, rather than the 

modern value. 

High-resolution analysis of 18O and 13C in the fossil corals was used to interpret the 

influences of ENSO, the Asian-Australian monsoon and remote equatorial Indian Ocean 

forcing on the local climate and oceanography of Sumba. Distinctive signals in the coral 

18O and 13C climatologies were utilized to disentangle the local climatologic imprints 

of the three climate systems. The Sumba coral 18O record shows the dominant control 

of ENSO in austral winter whereby the interannual variability of the winter 18O serves 

as a good index for ENSO events. In austral summer and autumn (November through 

May), the coral 18O is overwhelmingly controlled by the tropical Indian Ocean winds 

and the monsoon. The results suggest that the somewhat complicated relationship 

between ENSO and Asian-Australian monsoon varied during background climate states 

with different mean SST and seawater 18O values. When the Asian-Australian 

monsoon was relatively strong at ~134 ka during Termination II, the El Niño was 

suppressed. During the Holocene, both the ENSO and monsoon were relatively strong 

at 4.8 ka. At 3.7 ka the ENSO was weaker than at 4.8 ka and modern times, but the 

monsoon was still stronger than it is at present. Taken together, the Sumba coral records 

indicate that the modern monsoon is the weakest on record. However, El Niño events 

were 40% less frequent at 134 ka, 23% more frequent at 4.8 ka, and 11% less frequent 

at 3.7 ka, relative to modern El Niño activity.  

The high-resolution Sumba modern Porites coral 18O provides evidence for the routine 

penetration of the South Java Current (SJC) in austral summer and remote forced 

equatorial Indian Ocean Kelvin wave in autumn into the Savu Sea, which results in 

distinct freshening of the surface ocean during the austral autumn. By sensitively 

recording variability of sea surface temperature and salinity in this important exit of the 

Indonesian Throughflow (ITF), the Sumba coral 18O revealed active oceanic current 
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activity in Sumba Strait since 134 ka. In austral winter, westward currents generally 

flow in the Sumba Strait and the ITF brings Pacific source-water with moderate salinity. 

In summer, the more saline SJC enters the Savu Sea from the west until around March. 

After March, two causes gradually lower the seawater salinity: the gradual weakening 

of the eastward SJC owing to the weakening of northwest monsoon winds, and the 

arrival of a remotely forced Kelvin wave with very warm and fresh water during 

April-July. Input of Indian Ocean water into the Savu Sea by the summer SJC and 

autumn Kelvin wave could have significantly influenced the transport of the Indonesian 

Throughflow 

Detailed correlations between annual skeletal density banding and the high-resolution 

coral 13C record show that the low skeletal density band coincides with peak summer 

monsoonal rainfall and maximum depletion in skeletal 13C. This correlation was 

attributed to the large input of terrigenous nutrients linked to peak summer monsoonal 

rainfall. This relationship could be applied to explore local monsoon variability in a 

more economical and efficient way by simply measuring the coral density. 
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1.1  RATIONALE 

The primary goal of this PhD project is to reconstruct the natural bounds of Late 

Quaternary ocean/climate variability in the Indo-Pacific Warm Pool. The Indo-Pacific 

Warm Pool-Indonesian Maritime Continent region is a key component of global climate 

system. The Warm Pool is a major source of moisture and latent heat for the global 

atmosphere and plays a fundamental role in driving the globally important meridional 

Hadley circulation and zonal Walker circulation [Keenan et al., 2000]. Recent studies 

indicate that changes in sea surface temperature (SST) and atmospheric convection in 

the tropical Indo-Pacific region contribute to the interannual to decadal climate 

variability observed in extra-tropical regions [Cane, 1998; Hoerling et al., 2001]. 

Changes in the Warm Pool region may also play an important role in driving 

glacial-interglacial cycles [Visser et al., 2003] and possibly millennial-scale climate 

change [Cane and Clement, 1999; Stott et al., 2002]. Important tropical climate systems 

with global impact, such as the El Nino-Southern Oscillation (ENSO), Asian-Australian 

Monsoon and Indian Ocean Dipole (IOD), interact within this region. The Indonesian 

Throughflow from the Pacific to the Indian Ocean also contributes to the thermal 

conditions and local hydrological cycles of this region [Gordon et al., 2003; Gordon, 

2005]. 

Despite its profound importance, little is known about the natural bounds of past 

ocean/climate variability of the Warm Pool because of the limited historical database in 

this region. The available instrumental records for the Warm Pool region are too short 

and scarce to adequately characterise its natural variability. The problem of sparse data 

is exacerbated by the fact that many scientists believe that human activity has already 

influenced modern sea surface temperature and climate variability [e.g. El Niño/La Niña 

phenomena, Trenberth and Hoar, 1996] through the injection of fossil fuel CO2 into the 

atmosphere [Hansen and Lebedeff, 1987]. Proxy records of climate provide the only 

means for extending the Warm Pool ocean/climate records to pre-anthropogenic time. 
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Also, paleoclimate reconstructions provide the only way to understand how climate 

behaves during periods when climate boundary conditions were much different from 

those of the present day. Knowing the natural bounds of past ocean-atmosphere 

variability in the Warm Pool region will improve our understanding of the role of the 

tropics in global climate change at different time scales, and enhance our ability to 

predict climate change in the future. 

Modern and fossil Porites corals provide one of the most promising natural archives for 

the reconstruction of ocean-atmosphere climate variability on seasonal to interannual 

timescales. Porites corals provide unparalleled temporal resolution for reconstructing 

past climate and are capable of recording the physical and chemical properties of their 

growth environment. Surface-ocean temperature and salinity are the two most important 

parameters for understanding the role of ocean-atmosphere interactions in global 

climate change. Measurements of stable isotopic compositions and element ratios in 

coral skeletons allow for the simultaneous tracking of SST, concentration of 18O in 

surface seawater, input of nutrients, and incoming radiation on seasonal to interannual 

timescales. The 18O of coral skeletons is a function of the combined effects of seawater 

18O and the temperature at which the coral aragonite precipitates, while coral 13C is 

usually closely connected to the ambient nutrient isotopic composition and incoming 

solar radiation which reflect local rainfall and cloud cover. Given a period of time when 

global ice volume is relatively stable, the local sea-surface hydrological balance 

between precipitation and evaporation can be extracted from coral records. Such records 

provide reliable and detailed histories of the Warm Pool climate and insights into how 

the ocean and atmosphere interact as background climate changes.  

Coral geochemistry has long been applied to reconstruct changes in mean climate and 

ENSO variability in the tropics [Cole and Fairbanks, 1990; McCulloch et al., 1994; 

Dunbar et al., 1996; Beck et al., 1997; Quinn et al., 1998; Hughen et al., 1999; 

McCulloch et al., 1999; Urban et al., 2000; Tudhope et al., 2001; Cobb et al., 2003; 

Watanabe et al., 2003; Woodroffe et al., 2003; Gagan et al., 2004; Kilbourne et al., 2004; 

McGregor and Gagan, 2004; D'Arrigo et al., 2006; Juillet-Leclerc et al., 2006; Quinn et 
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al., 2006]. Coral records also show potential to record the variability of monsoonal 

rainfall in the tropical monsoon regions [Charles et al., 1997; Charles et al., 2003; 

Pfeiffer et al., 2004; Sun et al., 2005; Yu et al., 2005; Chakraborty, 2006; D'Arrigo et al., 

2006; Abram et al., 2007; Morimoto et al., 2007]. While some of these records were 

high-resolution and shed light on the variability of important climate systems at a 

seasonal timescale, they are mostly limited to the Holocene epoch. More high-resolution 

coral records are needed, especially for periods before the Holocene. 

The island of Sumba is located within this key region of atmospheric and oceanic 

exchange and a wealth of modern and Late Quaternary corals have been collected there. 

The coral reefs of Sumba are situated in the southern sector of the Indonesian maritime 

continent where the El Niño-Southern Oscillation (ENSO) has a strong impact [Nicholls, 

1981; 1984; Ropelewski and Halpert, 1996; Haylock and McBride, 2001; McBride et al., 

2003]. Sumba corals are also in the migration path of the Asian-Australian monsoon 

convective centre [Meehl, 1987; Chang et al., 2005]. A 1 million-year-long sequence of 

raised coral terraces has been found in Cape Laundi in the central north Sumba 

[Pirazzoli et al., 1991]. The geological and depositional setting of a recently discovered 

suite of fossil coral terraces located at Mondu village, west of Cape Laundi, appears to 

be particularly well suited for the in situ preservation of large coral colonies. Two 

fieldtrips during 1995 and 1998 have produced many long cores from the Holocene and 

modern reefs, and reconnaissance-style drilling of the older raised reefs has revealed the 

prospect of high-quality fossil corals suitable for palaeoclimate reconstruction. 

1.2  AIMS 

Specifically, this project has the following research aims: 

1. To explore the Mondu area for raised coral reefs, retrieve long cores from Porites 

corals, and U-series date the reefs and coral cores. To achieve this aim, detailed 

topographic surveys, field observations, and stratigraphic analysis were carried out to 
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determine the relative ages of the raised reefs and fossil corals. Collecting robust coral 

samples with thick well-preserved walls facilitated the U-series dating. High-precision 

U-series isotope measurements were applied to try to achieve reliable ages. Studies of 

diagenesis and its effects on the distribution of U/Th isotopes in the fossil coral 

skeletons served to support the dating strategy. 

2. To explore the climatologic and oceanographic significance of the Sumba coral 

18O and 13C records by characterizing them using instrumental records of local 

climate phenomena. Towards this end, high-resolution coral 18O and 13C records 

were extracted from modern Sumba corals and compared with the available 

instrumental records of local climate. Statistical transformation and analysis involved 

characterizing the coral records, local instrumental records, and remote detection indices. 

I focused on the seasonal characteristics and interannual variability of the climate 

parameters. Where possible, sections of records were duplicated within a given 

time-slice to demonstrate the level of reproducibility of climate signals. 

3. To reconstruct climate variability since the middle Holocene. A wealth of coral 

cores have been collected from the Holocene reefs which provides an excellent 

opportunity to reconstruct sea surface temperature and evaporation/precipitation at high 

temporal resolution. The Holocene coral records will improve our understanding of the 

natural bounds of climate variability for important systems, such as the ENSO, 

Asian-Australian Monsoon, and Indonesian Throughflow. 

4. To reconstruct climate variability during background conditions distinct from the 

modern and Holocene. This aspect of the project was highly exploratory and aimed to 

find and drill cores from well-preserved corals older than the Holocene, U-series date 

them, and produce high-resolution paleoclimate records. The Late Quaternary coral 

records document variations in the prevailing climatic and oceanographic systems 

during distinctly different background climate states. 

 



Chapter 1: Rationale and Aims 

6                                   The Australian National University 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                           7 

CHAPTER 2 

CORAL AS A TOOL FOR RECONSTRUCTING PAST CLIMATE 
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Annually banded massive corals have unique attributes that make them exceptional 

archives of environmental change in the tropics through the Late Quaternary. These 

include the proven ability of large corals to yield high-resolution (up to weekly) 

multidecadal to multicentury records of past climate variability in the Late Quaternary , 

and the ability to directly date corals by high-precision U-series techniques [reviewed 

by Druffel, 1997; Dunbar and Cole, 1999; Gagan et al., 2000; Correge, 2006; Eakin 

and Grottoli, 2006; Grottoli and Eakin, 2007, and so on.].  

2.1   CORAL CHRONOMETERS 

2.1.1   Density banding 

The most significant characteristics contained in most hermatypic coral skeletons are 

annual density bands that consist of a high and low density couplet per year discernible 

by x-ray of a thin slab cut parallel to the axis of upward corallite growth. Barnes and 

Lough have noted that almost all the published papers on coral density banding describe 

the annual pattern as one band of higher density and one of lower density [Barnes and 

Lough, 1989], even in corals with 12 or more fine bands which group together to form 

an annual band couplet [Buddemeier, 1974; Barnes and Lough, 1989; Gill et al., 2006]. 

Annual variations in skeletal density represent changes in both the rate of linear 

extension and calcification. Massive Porites corals in the tropics usually grow 

continuously at rates of 6-25 mm/yr, producing annual density bands that provide time 

markers for the development of long chronologies [Knutson et al., 1972]. Density bands 

provide an inexpensive, fast, and precise chronology of skeletal growth with many coral 

records having absolute annual chronologies. Where banding is absent or poorly defined, 

the seasonal cycling of detailed oxygen or carbon isotope records [Fairbanks and 
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Dodge, 1979; Cole et al., 1993; Gagan et al., 1996; Evens et al., 1998] can be used to 

fill gaps in coral growth records or even to establish relatively long chronologies. Just as 

dendrochronologists cross-date wood samples to extend tree-ring chronologies, 

distinctive growth bands in corals (e.g stress bands) have been used as time-markers to 

improve the accuracy of coral chronologies [Druffel, 1997]. Application of cross-dating 

and multiple age-specific tracers should allow most coral records to achieve true annual 

chronologic precision [Hendy et al., 2003]. 

It is likely that the sensitivity of corals to their environment varies with species and 

location [Lough and Barnes, 1997], and skeletal extension, density and calcification do 

not necessarily increase or decrease in concert with changes in environmental 

conditions [Dodge and Brass, 1984]. However, many studies agree that, at least for 

Porites, extension rate is inversely related to average skeletal density [Lough and 

Barnes, 1992; Scoffin et al., 1992; Lough and Barnes, 2000] and directed linked to 

calcification rate [Dodge and Brass, 1984; Grigg, 1997; Lough and Barnes, 2000]. 

Density variations in corals have been explored as a proxy for variations in 

environmental conditions, such as sea surface temperature [Lough and Barnes, 1990; 

1997; 2000; Carricart-Ganivet, 2007; Worum et al., 2007], even though the 

relationships between them are complex [Aharon, 1991]. 

2.1.2  UV fluorescent banding 

UV fluorescent banding is commonly observed in coral slabs placed under long-wave 

ultra-violet (UV) light. Isdale [1984] first described UV fluorescent banding in an 

inshore Great Barrier Reef (GBR) Porites colony and recognized it as an annual maker, 

consistent with the region’s seasonal river runoff. Slices cut from skeletons of massive 

Porites display two types of fluorescence when illuminated by UV light: (1) faint 

fluorescent banding associated with annual skeletal density banding and (2) narrow 

lines of strong fluorescence associated with monsoonal runoff of fresh water from 
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nearby land [Barnes and Taylor, 2005]. The timing, width and intensity of the 

fluorescent bands correlate strongly with summer monsoon rainfall [Lough, 1991] and 

the magnitude of coastal discharge from Queensland’s largest river, the Burdekin [Isdale, 

1984; Lough, 1997; Isdale et al., 1998]. The fluorescent lines were attributed to 

terrestrial humic substances transported in river flood plumes to the GBR lagoon and 

then incorporated into the coral skeleton [Boto and Isdale, 1985; Susic et al., 1991]. In 

contrast, marine organic matter is the proposed source of the diffuse fluorescent bands 

in corals distant from freshwater input, such as those from southern Oman [Tudhope et 

al., 1996] and the outer GBR [Susic et al., 1991]. Ramseyer et al. [1997] concluded that 

fluorescence results from skeletal construction of less densely-packed aragonite crystals 

which, in turn, traps more organic matter. This is consistent with evidence from Scoffin 

et al. [1989] and Barnes and Taylor [2005] that fluorescent lines coincide with low 

density bands in the coral skeleton. Barnes and Taylor [2001] presented an alternative 

model in which fluorescent bands in coral skeletons are the result of reduced 

calcification as the coral responds to low salinity conditions associated with coastal 

runoff. 

UV fluorescent banding is usually applied with density banding as a complementary 

tool to help with the recognition of annual cycles of coral growth. However, Hendy et al. 

[2003] successfully established an absolute chronology for the past 373 years by 

cross-dating characteristic patterns of fluorescent bands in eight long coral cores from 

the GBR. They also used fluorescence in corals as a proxy for freshwater influx to the 

GBR to gain insight into regional rainfall variability and ENSO teleconnection patterns 

over the past several centuries. 

2.1.3  Uranium-series dating 

Dating of modern and fossil corals by uranium-series methods provides excellent 

absolute age control for the Late Quaternary and Holocene [Quinn and Tudhope, 2000]. 

Uranium-series dating methods originate from two separate decay chains parented by 
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238U and 235U [Edwards et al., 2003]. These parent isotopes are separated from their 

daughter products, including 230Th and 231Pa respectively, during the weathering process 

because uranium is soluble in most natural waters, while 230Th and 231Pa are essentially 

insoluble. Thus carbonates precipitated from natural waters will contain some uranium, 

but essentially no thorium or protactinium [Broecker, 1963; Broecker and Thurber, 

1965]. The in-growth of 230Th from the decay of 238U is the backbone of the main 

chronometer, which finds one of its optimal applications in fossil corals due to the high 

concentration of uranium (~3 ppm) in coralline skeletal aragonite. The half-life of 230Th 

is ~75,000 years, which allows the technique to be applied back to ~450,000 years ago 

for coral that has been perfectly preserved. 231Pa has a half-life of ~33,000 years, and an 

applicable range of ~200,000 years. High-precision techniques utilizing thermal 

ionization mass spectrometry (TIMS) yield analytical precisions ranging from two years 

for a 100-year old sample to 10,000 years for a 350,000-year old sample [Edwards et al., 

1987]. The recent use of multi-collector inductively coupled plasma mass spectrometry 

(MC-ICP-MS) has yielded even higher analytical precision [Luo et al., 1997; Stirling et 

al., 2001; Andersen et al., 2004; Potter et al., 2005].  

Many studies have employed 230Th dating of fossil corals to study a wide range of 

problems including neo-tectonics, 14C-calibration, and reconstructing past sea levels and 

palaeoclimate [Bard et al., 1996; Stirling et al., 1998; Esat et al., 1999; McCulloch et al., 

1999; Tudhope et al., 2001; Cutler et al., 2003; Fairbanks et al., 2005]. For older corals 

especially, the limitation is not usually the precision of the determined age, but the 

preservation of the sample, as most older corals come from uplifted reefs subject to 

meteoric diagenesis [Bard et al., 1992; Stirling et al., 1995; Scholz et al., 2004].  

Coralline aragonite can be altered to calcite and aragonite by meteoric waters, thus 

potentially changing the U-series isotopic composition and shifting the 230Th age from 

its true value [Stein et al., 1993]. Screening for calcite is a first-order check for 

alteration, however measuring the uranium isotopic composition provides a means of 

testing for subtle diagenesis. 234U, another daughter of 238U, is also fractionated from its 

parent and is present in excess in ocean water. The modern marine 234U/238U ratio is 
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1.144 to ~1.149 [Chen et al., 1986; Edwards et al., 1986/87; Chen et al., 1991; Ludwig 

et al., 1991; Gallup et al., 1994; Szabo et al., 1994; Cheng et al., 2000; Stirling et al., 

2001; Muhs, 2002; Robinson et al., 2004] (the ratio would be 1 if there was no 

fractionation), whereas some uplifted fossil corals older than 100,000 years have 

234U/238U ratios that imply an initial marine value exceeding 1.2. Seawater 234U/238U 

ratios exceeding ~1.17 are highly unlikely to have occurred in the last 200,000 years 

[Hamelin et al., 1991b; Richter and Turekian, 1993], given the ~400,000 year residence 

time of U in the ocean ([~ 400,000 years; Ku et al., 1977]. Such elevated 234U/238U 

ratios imply that the corals have been altered by diagenesis. Further, several studies 

have suggested that the marine 234U/238U ratio has not changed significantly over the 

last 200,000 to 400,000 years [Henderson and Cohen, 1993; Gallup et al., 1994; 

Henderson, 2002]. As a result, checking the 234U/238U ratio has become a standard 

means for testing the quality of a coral sample, and thus the reliability of the 230Th age 

[Stirling et al., 1995; Scholz and Mangini, 2007]. Recently, 231Pa dating has become 

important as an independent chronometer, providing a test of concordance between 

230Th and 231Pa ages [Edwards et al., 1997; Gallup et al., 2002; Edwards et al., 2003]. 

Even though some researchers have found no general correlation between coral 234U 

value (activity ratio for 234U/238U which is reformulated into -notation as δ234U = 

((234U/238U) / (234U/238Ueq) - 1) × 103 , with (234U/238Ueq) as the atomic ratio at secular 

equilibrium and equal to 238/234 where 238 and 234 are the decay constants for 238U 

and 234U respectively), measured 230Th/238U activity ratio, and calculated 230Th age 

[such as Chen et al., 1991], many others found some correlation between 234U and 

230Th age [Stein et al., 1993; Zhu et al., 1993; Fruijtier et al., 2000] and 230Th/238U 

[Bender et al., 1979; Hamelin et al., 1991b; Bard et al., 1992; Gallup et al., 1994; 

Stirling et al., 1995; Cheng et al., 1998; Henderson et al., 2001; Stirling et al., 2001; 

Thompson et al., 2003; Villemant and Feuillet, 2003; Potter et al., 2004; Scholz et al., 

2004]. Various models have been developed to explain U-series isotopic anomalies in 

reef corals. Some authors showed the effects of gain and loss of 238U and 230Th [Chen et 

al., 1991; Hamelin et al., 1991a; Bar-Matthews et al., 1993; Henderson and Cohen, 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                           13 

1993]. Ku et al. [1990] suggested a model which takes into account gain or loss of both 

234U and 238U through continuous exchange with uranium in groundwater or soil water. 

Bender et al. [1979] and Gallup et al. [1994] presented models where 234U and 230Th are 

continuously added to corals, while Cheng et al. [1998] modelled continuous/episodic 

uranium gain and loss relative to 230Th, or continuous addition of 234U and 230Th. The 

latter study showed that if a suite of samples of the same age experience different 

degrees of one of the above-mentioned processes, the data will fall along a curve that is 

close to a straight line near the upper intercept in a concordia diagram whereby the 

upper intercept will the true age of crystallization. 

Recently three models have been published to try to produce accurate U-series 

correction ages. Villemant and Feuillet [2003] propose a model that takes into account 

possible initial 230Th excess where continuous selective redistribution (gain or loss) of 

234U, 234Th and 230Th is controlled by recoil processes. Thompson et al. [2003] present a 

quantitative model where the positive correlation between 234U/238U and 230Th/238U 

activity ratios is explained by coupled addition of particle-reactive 234Th and 230Th, 

which is produced by decay of dissolved uranium and -recoil mobilisation of uranium 

daughters. Scholz et al. [2004] have developed a new model which combines uranium 

uptake and loss, the latter being proportional to the amount of uptake, that explains their 

data and produces characteristic isochrons. They show that the ‘true’ age of the coral 

can be calculated from the intersection of the isochron and the seawater evolution curve. 

2.1.4  Radiocarbon dating 

Radiocarbon (14C) is produced in the upper atmosphere by bombardment of atmospheric 

nitrogen atoms with cosmic ray neutrons. The 14C atoms are rapidly oxidized to 14CO2, 

which diffuses downwards and mixes with the pool of atmospheric carbon dioxide and 

enters into all pathways of the biosphere. Plants and animals assimilate 14C into their 

tissues through photosynthesis and respiration; the 14C content of these tissues is in 

equilibrium with that of the atmosphere because there is a constant exchange of new 14C 
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as old cells die and are replaced. However, as soon as an organism dies this exchange 

and replacement of 14C ceases. From that moment on the 14C content of the organism 

declines as the 14C decays to nitrogen with a half-life of 5,730 years, and the 14C content 

is henceforth purely a function of time. The age of organic material can be determined 

by measuring the ratio of 14C to 12C or 13C [Gupta and Polach, 1985]. Now accelerator 

coupled mass spectrometers (AMS) are often used to measure the concentrations of 

individual ions of 14C, 13C and 12C and only 1 mg of carbon is required for analysis. 

The 14C content of the mixed layer of the surface ocean where corals grow is different to 

that in the atmosphere due to slow isotopic exchange between the atmosphere and 

surface ocean and the 14C dilution effect due to mixing with older 14C-depleted deep 

water. Therefore, corals formed in the 14C-depleted surface-ocean reservoir will yield 

apparent ages that are older than their true age. A correction for this apparent age 

anomaly is possible when the reservoir-atmosphere offset in 14C is known. On average 

the radiocarbon ages of samples formed in the surface ocean are 400 years older than 

those formed in isotopic equilibrium with northern hemisphere atmospheric CO2 [Bard 

et al., 1993; Stuiver and Braziunas, 1993]. This 400 year offset for the surface ocean is 

known as the global oceanic reservoir effect. Regional variations in the oceanic 

reservoir effect can occur due to the upwelling of 14C-depleted water as well as regional 

differences in the 14C content of the atmosphere [Stuiver and Braziunas, 1993]. 

Since the activity of 14C in the atmosphere has not remained constant over time, the 

radiometric time scale is not an absolute time scale. However, conventional radiocarbon 

ages can be converted into calibrated calendar years (cal BP relative to 1950 AD) by 

applying internationally agreed calibration curves based on carefully screened data with 

updates at 4-6 year intervals [Klein et al., 1982; Stuiver and Reimer, 1986; 1993; 

Stuiver et al., 1998]. The current internationally-ratified calibration curves are IntCal04, 

SHCal04, and Marine04, for Northern Hemisphere terrestrial, Southern Hemisphere 

terrestrial, and marine samples, respectively [Hughen et al., 2004; McCormac et al., 

2004; Reimer et al., 2004]. These calibration curves can now be accessed through the 

program Calib5 [Stuiver et al., 2005, available on http://calib.qub.ac.uk/calib/]. 
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2.2  CLIMATE PROXIES 

2.2.1  Oxygen isotopes 

The oxygen isotopic composition of coral skeletons is the most frequently used coral 

climate proxy. The oxygen isotopic composition of a sample is generally expressed as a 

departure of the 18O/16O ratio from an arbitrary standard (18O), as follows: 

18O = 1000 × (18O/16Osample – 18O/16Ostandard) ÷ 18O/16Ostandard 

The resulting values are expressed in per mil (‰) units. The isotopic composition of 

carbonates is determined by the isotopic composition of the fluid and the 

thermodynamic isotope fraction during crystallization [McCrea, 1950]. Therefore, coral 

18O reflects environmental conditions (mainly temperature and seawater 18O) in the 

ambient seawater during skeletal aragonite precipitation. On timescales for which ice 

sheet variability is negligible, coral 18O mainly reflects the local sea surface 

temperature (SST) and the local hydrological conditions (sea surface salinity (SSS) 

resulting from evaporation, precipitation and runoff). 

The temperature-dependent fractionation of oxygen isotopes in biological carbonate was 

first found in mollusk aragonite by Epstein et al. [1953], where 18O decreases by 

~0.22‰ for each 1°C increase in temperature. Weber and Woodhead [1972] 

subsequently demonstrated that the 18O of coralline aragonite also varied inversely 

with SST though different genera were offset by constant amounts from this 18O vs. 

SST relationship. Seasonal variations in 18O along the growth axis of a coral and their 

relationship to seasonal SST variations were first reported by Fairbanks and Dodge 

[1979]. Subsequently, Dunbar and Wellington [1981] showed that finely sampled corals 

can provide an intra-annual record of SST. Since then, many researchers have shown 

that in oceanic settings where the oxygen isotope composition of seawater is constant, 

coral skeletal 18O records SST variability. The isotopic composition of coralline 
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aragonite is offset by a biological non-equilibrium effect that appears to be stable 

through time, as long as a consistent, maximum growth axis is sampled within a coral 

colony [McConnaughey, 1989; Winter et al., 1991; Shen et al., 1992; Gagan et al., 1994; 

Leder et al., 1996; Swart et al., 1996a; Wellington et al., 1996; Cohen and Hart, 1997]. 

For the genus Porites, a 18O-SST relationship has been established by Gagan et al. 

[1994] with a 0.18‰ increase in 18O per 1°C decrease in SST. Other 18O-SST 

relationships have been suggested for different regions, such as 0.172‰/°C by Quinn et 

al. [1998], 0.15‰/°C by Boiseau et al. [1998], 0.164‰/°C by Felis et al. [2000]. 

The other important influence on coral 18O is the isotopic signature of seawater, which 

is related to the salinity of the surface water set by the balance of evaporation, 

precipitation, runoff, and water advection [Swart and Coleman, 1980; Dunbar and 

Wellington, 1981; Cole et al., 1993; Gagan et al., 1994; Linsley et al., 1994]. In oceanic 

settings where seawater 18O correlates with rainfall, long records of coral 18O have 

been used to reconstruct precipitation [Cole et al., 1993; Linsley et al., 1994]. 

A recently developed technique involving tandem measurements of 18O and Sr/Ca 

(SST proxy) in corals allows for the simultaneous tracking of SST and sea surface 

hydrological balance, which are the two most important parameters for understanding 

the role of ocean-atmosphere interactions in global climate change [McCulloch et al., 

1994; Gagan et al., 1998; Hendy et al., 2002]. The proxy used to determine the 

surface-ocean hydrological balance is referred to as the residual 18O (18O). 

2.2.2  Carbon isotopes 

The carbon isotope signal in corals is less straightforward to interpret in climatic terms 

because coral 13C (the per mil deviation of the ratio of 13C/12C relative to 

Vienna-Peedee Belemnite Limestone Standard) generally has a complicated relationship 

with environmental and physiological variables that interact. Variables potentially 

affecting coral 13C mainly include the 13C value of dissolved inorganic carbon (DIC) 
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in reef water [Swart et al., 1996b], light related photosynthetic modulation of the 

isotopic composition of the coral internal DIC pool [Weber and Woodhead, 1970; 

Fairbanks and Dodge, 1979; Swart, 1983; McConnaughey, 1989; Wellington and 

Dunbar, 1995; Swart et al., 1996b], the symbiotic relationship between corals and 

zooxanthellae [Porter et al., 1989; Carriquiry et al., 1994; Allison et al., 1996], 

heterotrophic vs autotrophic feeding [Carriquiry et al., 1994; Swart et al., 1996b; Felis 

et al., 1998], coral spawing [Gagan et al., 1994], colony topography [Cohen and Hart, 

1997], and kinetic effects associated with the rate of coral growth and calcification 

[McConnaughey, 1989; de Villiers et al., 1995; Allison et al., 1996; Cohen and Hart, 

1997; McConnaughey, 2003]. 

The control of light on coral 13C has been observed by many researchers [Weber and 

Woodhead, 1970; Erez, 1978; Fairbanks and Dodge, 1979; Swart, 1983; 

McConnaughey, 1989; Wellington and Dunbar, 1995; Swart et al., 1996b] and it is 

generally believed that light intensity affects coral calcification as it takes place from an 

internal inorganic carbon pool [Erez, 1978; Swart, 1983; McConnaughey, 1989]. This 

internal pool is composed of carbon derived from the ambient seawater and coral 

respiration and modified by fractionation during CO2 uptake by photosynthesis. 

Zooxanthellar photosynthesis preferentially fixes 12C and leaves behind 13C, thus 

increases in the rate of photosynthesis enrich the carbon isotope ratio of the skeleton. 

Incoming short-wave radiation is highly correlated with incoming photosynthetically 

active radiation, thus any change in incoming short-wave radiation would change the 

photosynthetic activity of the endosymbiotic zooxanthellae and hence the 13C of the 

coral skeleton. 

Although the symbiotic algae are capable of providing their coral host with up to 100% 

of its daily metabolic energy requirements [Muscatine et al., 1981; Grottoli et al., 2006], 

it has been demonstrated that zooxanthellar photosynthetic activity can decrease or even 

cease under some environmental stresses, such as elevated temperature and light [Porter 

et al., 1989; Jokiel and Coles, 1990; Fitt et al., 2000]. A decrease in zooxanthellar 
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photosynthetic activity could decrease the intake of 12C from the coral DIC pool and 

increase of proportion of 12C precipitated in coral skeleton [Swart, 1983; 

McConnaughey, 1989]. Recently, Grottoli et al. [2006] found that some coral species 

meet more than 100% of their daily metabolic energy requirements by markedly 

increasing their feeding rates and CHAR (per cent contribution of heterotrophicaaly 

acquired carbon to daily animal respiration) when they lose photosynthetic energy input 

from the symbiotic zooxanthellae. Porites colonies can switch from autotrophy to 

heterotropy depending on food availability and this plays an important role in 

interannual skeletal 13C variability [Felis et al., 1998]. Anthony [1999; 2000] found 

that corals from the inshore GBR have a greater capacity to feed on suspended sediment 

than the same species living in the mid-shelf, suggesting a heterotrophic adaptation to 

the turbid coastal conditions. Risk et al. [1994] discovered that the coral 13C trend 

across the GBR shelf may result from shifting levels of autotrophy with changes in 

water turbidity. 

2.2.3  Strontium/Calcium 

Owing to their chemical similarity to Ca, elements such as Sr, Mg, U, Ba, and Cd are 

co-precipitated in coral skeletal aragonite. Many studies have shown that the relative 

concentration of such elements often provides a palaeoclimatic or palaeoceanographic 

signal [e.g.: Smith et al., 1979; Shen and Sanford, 1990]. The coralline Sr/Ca ratio 

provides one of the most powerful approaches to reconstruct sea surface temperature. 

The groundwork for Sr/Ca thermometry was laid by Smith et al. [1979] who showed 

that the Sr/Ca ratio in coralline aragonite correlated with temperature. A significant 

improvement was made by Beck et al. [1992] who used thermal ionization mass 

spectrometry (TIMS) to dramatically enhance the signal-to-noise ratio for this proxy. 

Their results showed that the coral Sr/Ca records track SST with an apparent accuracy 

of better than ± 0.5°C. 

Since then, many studies have shown that Sr/Ca in coral can be a high-fidelity 
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temperature proxy [de Villiers et al., 1994; McCulloch et al., 1994; Min et al., 1995; 

Shen, 1996; Alibert and McCulloch, 1997; Gagan et al., 1998] and a number of 

Sr/Ca-SST relationships have been established. The slopes of most of the calibration 

equations are similar, with a mean value of 0.062±0.014 based on data published before 

year 2000 [Gagan et al., 2000], or 0.0607±0.0089 based on data published before 2006 

[Correge, 2006]. 

The Sr/Ca palaeothermometer is based on two key assumptions in that biological 

controls on skeletal Sr/Ca up-take and changes in the Sr/Ca content of seawater are 

assumed to be negligible. Even though most studies support these assumptions, there 

are some who disagree. De Villiers et al. [1994; 1995] found that variations in skeletal 

extension rate caused variations of 2-4°C in the calculated temperature. Also, de Villiers 

et al. [1994] reported variation in seawater Sr/Ca that could lead to errors in temperature 

estimates of up to 0.7°C. This effect is most pronounced in areas where upwelling 

brings water enriched in Sr to the surface [de Villiers, 1999]. Furthermore, modeling by 

Stoll and Schrag [Stoll and Schrag, 1998] suggested that changes in sea level leading to 

recrystallization of exposed aragonite have caused fluctuations in the seawater Sr/Ca 

ratio during glacial-interglacial cycles. These fluctuations could produce errors in 

palaeotemperatures of up to 1.5°C. 

Sub-weekly to daily sampling of coralline material reveals spikes in Sr/Ca ratios 

unrelated to temperature [Allison, 1996; Hart and Cohen, 1996; Sinclair et al., 1998]. 

Reproducibility on coral samples suggests that these inhomogeneities in the Sr/Ca 

distribution can produce uncertainties of around 0.3°C in fine-scale measurements. 

2.3  DIAGENESIS 

Biogenic coral aragonite is subject to post-depositional diagenetic alteration in the 

marine and vadose environments [James, 1974; Bathurst, 1975; Hubbard and Swart, 

1982; Aissaoui et al., 1986; Constanz, 1986; Martin et al., 1986; Purser and Schroeder, 
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1986; Potthast, 1992; Bar-Matthews et al., 1993; Stein et al., 1993; Tribble, 1993] and 

exchange and removal of elements and isotopes during diagenesis have the potential to 

affect the veracity of coral proxies [Guilderson et al., 1994; McCulloch et al., 1996; 

Esat et al., 1999; Hughen et al., 1999; Woodroffe and Gagan, 2000; Guilderson et al., 

2001; Tudhope et al., 2001; Felis et al., 2004; Brachert et al., 2006].  

Several recent studies have investigated the paleoclimatic implications of diagenetic 

transformations in corals [Enmar et al., 2000; Muller et al., 2001; McGregor and Gagan, 

2003; Muller et al., 2004; Quinn and Taylor, 2006]. McGregor and Gagan [2003] found 

that diagenetic transformation of aragonite to calcite and addition of calcite cements in 

environments with meteoric water decreases Sr/Ca, 18O and 13C in corals, which is 

consistent with early observations [Siegel, 1960; Martin et al., 1986; Stein et al., 1993; 

Zhu et al., 1994; Wei et al., 1998]. They also showed that lower Sr/Ca and 18O in 

diagenetically altered corals would produce warm SST artefacts of up to 1.5oC and 

0.2oC, respectively, for reconstructed paleotemperatures [McGregor and Gagan, 2003]. 

Recent studies have also showed that secondary aragonite added to coral skeletons 

during early marine diagenesis would produce significantly higher bulk Sr/Ca, 18O and 

13C relative to pristine corals [Enmar et al., 2000; Muller et al., 2001; Muller et al., 

2004; Gallup et al., 2006; Quinn and Taylor, 2006]. Conversion of these altered coral 

Sr/Ca and 18O compositions to SST using standard equations yielded anomalous 

palaeotemperature estimates that are ~4-5oC [Muller et al., 2001], 2.5oC (18O-SST) or 

6oC (Sr/Ca-SST) [Quinn and Taylor, 2006] cooler than those estimated from unaltered 

portions of the same coral. 
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CHAPTER 3 

GEOLOGY, CLIMATOLOGY, AND OCEANOGRAPHY AROUND SUMBA 
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3.1  THE STUDY AREA 

3.1.1  Location and tectonic setting 

The study area for this PhD project is located around Mondu village, ~10 km west of 

Cape Laundi, on the central part of the north coast of Sumba Island, Indonesia (Figure 

3.1).  
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Figure 3.1  Location of Sumba, Cape Laundi, and the study area 

Sumba is situated at the southwest end of a tectonic inflexion where the Sunda Arc 

passes eastward into the Banda Arc. The island is an exposed part of the outer arc ridge 

produced by the active subduction of the Indian-Australian plate beneath the Pacific 

plate [Fitch and Hamilton, 1974]. Sumba is separated from Australia by the Java 

Trench-Timor Trough, and from the volcanic ridge of the Sunda-Banda island-arc to the 

north by an outer arc basin (the Savu Sea). The collision of the plates and the upheaval 

of the outer arc ridge resulted in uplift of the palaeo-reefs and the formation of flights of 

raised coral terraces on the north coast of Sumba. 
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3.1.2  A 1 million-year-long sequence of coral terraces 

An exceptional sequence of coral-reef terraces is developed near Cape Laundi between 

sea level and an ancient patch reef 475 metres above sea level [Pirazzoli et al., 1991]. 

Figure 3.2 shows the flight of coral terraces on the western side of Cape Laundi. Using 

uranium-series and electron spin resonance dating, Pirazzoli et al. [1991; 1993] and 

Bard et al. [1996] deduced a local uplift rate of 0.49 m/kyr and concluded that most 

terraces correspond to specific interglacial stages, with the oldest terrace formed about 1 

million years ago. Their dating has been successful because of the relatively low levels 

of diagenesis in the Sumba fossil corals. In particular, the relatively low annual rainfall 

and pronounced winter dry-season tends to slow down the processes of diagenesis in 

fossil corals, leaving some of them almost unrecrystallized after 600 ka [Pirazzoli et al., 

1993].  

 

Figure 3.2  Coral terraces on the western side of Cape Laundi viewed from River Site Holocene raised reef in 

the Mondu area. The numbering of the terraces is in accord with Pirazzoli et al. [1993]. 

Unlike Pirazzoli et al. [1991; 1993] who focused on the terraces of Cape Laundi, my 

fieldwork area around Mondu village (~10 km west of Cape Laundi) has more extensive 

palaeo-reef terraces developed between 0 m and 80 m above sea level. This palaeo-reef 

setting provides an excellent opportunity to study the reef development between these 

altitudes and find more massive Porites corals suitable for palaeoclimate reconstruction. 
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All the coral cores for this climate study were drilled from reefs below 60 m above sea 

level, thus the altitudes of our corals are no higher than Pirazzoli et al.’s Terrace II3. 

During our surveys, we did not find any corals suitable for climate reconstruction on or 

above the upper terraces corresponding to Pirazzoli et al.’s Terrace II4 and Terrace II5. 

3.1.3  Local instrumental records 

The study area has an annual mean sea surface temperature (SST) of 28.2oC. The local 

mean SST is close to or above 29oC for up to six months per year and drops sharply 

below 26.5oC for only one month around mid-August (Figure 3.3).  
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Figure 3.3  The annual climatologies around Sumba, Indonesia. The climatologies are as follows: IGOSS sea 

surface temperature (SST, black curve, [Reynolds et al., 2002], Carton-Giese SODA dataset V1.4.2 sea surface 

salinity (SSS, parts per thousand, blue curve, [Carton et al., 2005], CMAP rainfall (green curve, [Xie and Arkin, 

1997], and Atlas of Surface Marine Data 1994 incoming short-wave radiation (orange curve, [da Silva et al., 1994]. 

The original data can be found at: http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/.nmc/, 

http://iridl.ldeo.columbia.edu/SOURCES/.CARTON-GIESE/SODA/.v1p2/, 

http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.Merged_Analysis, and 

http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94/.climatology/.shortrad/. 
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Even though most of Indonesia lies in the wet tropics, Sumba is relatively dry with a 

mean annual rainfall of 1655 mm (1979 to 2005) and most of the rain falls during the 

wet season from December to March. The mean rainfall in January or February is 15 

times higher than that in August, which marks the peak of the eight-month dry season 

from April to November when monthly mean rainfall is as low as 22 mm (Figure 3.3). 

The climatology of the local sea surface salinity is consistent with the low-salinity 

characteristic of the Indo-Pacific Warm Pool [annual average < 34.2 ppt (parts per 

thousand)]. In spite of that, it still shows some intra-annual variability including 

freshening during May to July with low SSS of 33.8 ppt in June. Surprisingly, Figure 

3.3 shows that the most saline surface water coincides with the summer monsoon peak 

during December to March, indicative of little effect of local rainfall on sea surface 

salinity even though the summer monsoon is as strong as 330 mm/month. Similarly, 

Figure 3.3 suggests that the local incoming surface radiation has little effect on the 

seasonality of the local sea surface temperature. 

3.2  THE OCEAN-ATMOSPHERE SYSTEM AND SUMBA 

Sumba is located in the south-central sector of the Indo-Pacific Warm Pool (Figure 3.4), 

which is of global importance for Earth’s climate system. Several important components 

of the tropical ocean-atmosphere system interact in the Warm Pool region, including the 

El Niño-Southern Oscillation, the Asian-Australian Monsoon, the Indian Ocean Dipole, 

the Indonesian Throughflow, and the South Java Current. 

3.2.1  Indo-Pacific Warm Pool 

The Indo-Pacific Warm Pool (IPWP) is a huge reservoir of warm ocean water around 

the Indonesian Maritime Continent. The IPWP is the largest expanse of warm 

surface-ocean water on our planet (mean SST >28°C), and is 2-5°C warmer than any 

other equatorial region [Yan et al., 1992]. It is also often referred to as the Western 
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Pacific Warm Pool (WPWP), even though it extends well into the tropical eastern Indian 

Ocean. During the northern summer, SSTs in the IPWP average 29-30°C. In winter, 

SSTs cool to 26-27°C. Precipitation over the IPWP is highest in northern summer, with 

roughly 80% of annual rainfall occurring between June and October. Rainfall averages 

between 300 and 400 mm/month during summer and between 50 and 100 mm/month 

during winter. As a result of this precipitation pattern, sea surface salinities vary 

seasonally by about 1.5‰. The annual precipitation pattern is tied to the migration of 

the Intertropical Convergence Zone (ITCZ) over the site and the timing of the northern 

summer monsoon. During El Niño and La Niña events, the western tropical Pacific 

experiences dramatic differences in precipitation. For example, summer precipitation 

over northern Indonesia can be diminished by as much as 60% during a major El Niño. 
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Figure 3.4  Location of Sumba and the Indo-Pacific Warm Pool (mean SST >28oC inside red curve, [Yan et al., 

1992] 

The IPWP is a key component of the global climate system because it is a major source 

of latent heat and moisture for the global atmosphere. The heat and moisture play a 

fundamental role in driving the zonal Walker circulation and meridional Hadley 
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circulation [Keenan et al., 2000]. An intense low-pressure cell above the IPW forms the 

rising branch of the Walker circulation, which produces high rainfall throughout the 

Indonesian region [Bjerknes, 1969]. With its high precipitation and tectonically active 

mountainous topography, this region contributes a large amount of water, solutes, and 

sediment to the coastal ocean. The overall balance of high precipitation exceeding 

evaporation results in relatively low sea surface salinity (SSS) in the IPWP. The IPWP is 

also a key area with respect to the exchange of water between two major oceans by the 

Indonesian Throughflow. The transfer of water from the Pacific to the Indian Ocean is 

crucial to the transport of heat and freshwater for the global ocean. Therefore, any 

changes in the nature of the Indo-Pacific Warm Pool and Indonesian Throughflow will 

certainly affect global energy transfers and climate. 

The major control of Australasian monsoon circulation, with the Warm Pool below its 

centre, is the recurrent shift in the intensity of the highly mobile Indonesian Low. Any 

changes in physiochemical sea surface parameters and vegetation would modify this 

seasonal monsoon circulation. And on inter-annual timescales during an El Niño, for 

example, the IPWP and the Indonesian Low migrate eastward to the central Pacific, 

upsetting the equilibrium of Earth’s climate and altering weather patterns around the 

world. During these warm ENSO episodes, cooler SSTs and less rainfall are the major 

characters of the climate in the Indonesian region.  

The IPWP is now generally regarded as the source area for a substantial proportion of 

Earth’s inter-annual climate variability. However, the role of the tropical oceans in 

longer-term climate changes is less clear and, until recently, has been largely neglected 

by palaeoclimatologists since the 1970s when a major study of global climate found that 

the tropical oceans had apparently cooled little during the last ice age while the rest of 

the world slipped into a deep freeze [CLIMAP Project Members, 1976]. Thinking that 

such climatological inertia implied a minor role for the tropics in climate change, 

researchers focused instead on the high latitudes, especially the North Atlantic, as the 

place where long-term climate changes are initiated [Kerr, 2001]. But now that new 



Chapter 3: Geology, climatology, and oceanography around Sumba  

28                                   The Australian National University 

research results have revealed the dynamic nature of tropical climate [Rind and Peteet, 

1985; Lyle et al., 1992; Guilderson et al., 1994; Thompson et al., 1995; Schrag et al., 

1996; Beck et al., 1997; McCulloch et al., 1999; Pelejero et al., 1999; Crowley, 2000; 

Lea et al., 2000; Lea et al., 2006], climatologists are now suggesting that the tropical 

Indian and Pacific oceans participate in, and possibly drive, long-term climate change 

[Cane, 1998; Cane and Evans, 2000; Pierrehumbert, 2000; Lea, 2002]. Indeed, recent 

studies indicate that changes in sea surface temperatures and atmospheric convection in 

the tropical Indo-Pacific region are responsible for the decadal climate variability 

observed in extra-tropical regions [Hoerling et al., 2001] and also play an important role 

in driving glacial-interglacial cycles [Visser et al., 2003] and possibly millennial-scale 

climate changes [Stott et al., 2002]. 

Therefore, utilizing modern and fossil corals to reconstruct the natural range of 

variability in sea surface temperature and hydrological cycle of the IPWP will be of 

great significance for understanding, modeling and predicting global climate change. 

3.2.2  El Niño-Southern Oscillation 

The El Niño-Southern Oscillation (ENSO) is the dominant coupled atmosphere-ocean 

mode of interannual climate variability, affecting most of the tropics and subtropics and 

many mid-latitude regions of North and South America and eastern Asia.  

A. ENSO term and mode 

The term El Niño means ‘the boy child’ and was first used by Peruvian fishermen in the 

late 1800s to describe the warm current appearing off the west coast of Peru around 

Christmas time [Enfield, 1989]. Today El Niño describes the warm phase of a naturally 

occurring sea surface temperature oscillation in the tropical Pacific Ocean. This 

oscillation is associated with the atmosphere, and thus the term ENSO – which 

incorporates the Southern Oscillation phenomenon – is commonly used. 
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Figure 3.5  Schematic of the El Niño-Southern Oscillation. (By NOAA/PMEL/TAO) 

Southern Oscillation (introduced by Sir Gilbert Walker) refers to a seesaw shift in 

surface air pressure at Darwin, Australia and the South Pacific island of Tahiti. When 

the pressure is high at Darwin it is low at Tahiti, and vice versa. El Niño, and its sister 
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event – La Niña – are the extreme phases of the Southern Oscillation, with El Niño 

referring to a warming of the eastern tropical Pacific, and La Niña a cooling [Philander, 

1990; Trenberth et al., 2002; Cane, 2005].  

Distinct climatic changes occur in both the atmosphere and ocean during periods of El 

Niño and La Niña. On average, sea surface temperatures are ~6-8°C warmer in the 

western tropical Pacific than in the eastern tropical Pacific. 

This east-west temperature difference is generally maintained by easterly trade winds 

that blow across the tropical Pacific and move the warm surface water from east to west. 

Because of this zonal temperature gradient, the trade winds typically blow towards the 

west across the tropical Pacific. However, during an El Niño event when the zonal 

temperature gradient is reduced, the trade winds typically slacken or reverse. Also, 

mean sea level is typically 0.5 m higher in the western tropical Pacific because the trade 

winds move water from east to west. This movement of water causes the thermocline to 

be deeper in the west than in the east, and as a result upwelling typically occurs in the 

eastern tropical Pacific. During an El Niño event, when the trade winds typically 

slacken or reverse, less water is moved from east to west and SST, sea level and the 

thermocline all increase in the east. During an El Niño event, surface air pressure is 

typically higher in the western tropical Pacific than in the eastern tropical Pacific. 

Much of the basic physics of the ENSO cycle is now reasonably well known and the 

coupled atmosphere-ocean mode has been established, as shown in Figure 3.5. The cool 

phase of ENSO is characterized by the zonal Walker circulation in which easterly winds 

occur at the surface, Indonesian Low convection is maximal, and westerly flow aloft 

brings dry subsiding air over the eastern and central Pacific. The transition to the warm 

phase of ENSO occurs when the trade winds relax west of the date line, which allows 

the western Pacific warm pool to move eastward. The Indonesian Low convective 

maximum migrates to the equatorial region near the date line, upwelling in the eastern 

Pacific is suppressed, and trade winds are weak because of the diminished zonal SST 
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gradient. Rainfall patterns across the tropical Pacific shift as the Indonesian Low 

migrates northeast and convection develops over newly warmed waters [Philander, 

1990; Cole et al., 1993]. 

B. Global impacts of ENSO 

El Niño events occur every three to seven years, and arise naturally through the strong 

interaction between the ocean and atmosphere in the tropical Pacific. The effects are felt 

worldwide (Figure 3.6) because the tropical Pacific is a powerful source of heat for 

driving atmospheric circulation. Even small changes in the sea-surface temperature in 

this region have major repercussions for global climate. Dry conditions in the western 

Pacific, warmer-than-average conditions in the northern United States and 

wetter-than-average conditions to the south, and suppressed hurricane development in 

the Atlantic, are all indicators of an El Niño event. Consequently, when the ENSO cycle 

is particularly strong, as occurred in 1982–83 and again in 1997–98, the changed 

weather patterns have profound social, economic and ecological consequences. 

 

Figure 3.6  Precipitation anomalies during El Niño events in northern summer and winter (from 

NOAA/PMEL/TAO). 
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The ENSO of the tropical Pacific has a strong influence over the rainfall and sea surface 

temperature in the Indonesian Maritime Continent on interannual timescales. During an 

El Niño event, eastern Indonesian rainfall is suppressed and the SST is cooler, with the 

converse happening during a La Niña [Nicholls, 1981; 1984; Ropelewski and Halpert, 

1996; Haylock and McBride, 2001; McBride et al., 2003]. Also, it is now well known 

that there is a strong seasonal variation in the association between Indonesian rainfall 

and the ENSO [Nicholls, 1981; Hastenrath, 1987; Haylock and McBride, 2001; 

McBride et al., 2003]. That is, rainfall in the Maritime Continent is strongly related to 

the ENSO during the dry half of the year (July to November) but has a weak association 

with ENSO during the summer wet-season months. 

C. Measurement of recent ENSO events 

Instrumental measures of ENSO are either atmospheric [the Southern Oscillation Index 

(SOI)] or oceanic (e.g. tropical Pacific SSTs) and extend back to the mid-19th century 

[Philander, 1990].  

The SOI measures the monthly/seasonal fluctuations in surface air pressure differences 

at Tahiti and Darwin (equation = Tahiti – Darwin) and thus the SOI usually has a 

negative value during an El Niño event. Other frequently used measures of ENSO 

events are the NINO 3 and NINO 3.4 indices which are area averages of eastern 

equatorial Pacific SST anomalies over the regions 5°N-5°S, 90°W-150°W and 5°N-5°S, 

120°W-170°W, respectively. Positive SST anomalies in these regions reflect El Niño 

conditions and negative anomalies mark La Niña conditions.  

A multivariate ENSO Index (MEI) based on six main observed variables over the 

tropical Pacific has been developed for research purposes [Wolter and Timlin, 1998]. 

The six variables are: sea-level pressure (P), zonal surface wind (U), meridional surface 

wind (V), sea surface temperature (S), surface air temperature (A), and total cloudiness 

fraction of the sky (C). Figure 3.7 shows all the ENSO events since 1950 and the 

comparison of their intensities based on the MEI index. 
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Figure 3.7  ENSO events from 1950 to 2007 based on the MEI index (from NOAA-CIRES-CDC). El Niño events 

are in red and La Niñas in blue. 

D. ENSO variability 

Most of the instrumental records of tropical Pacific climate span in detail only the past 

few decades. The few longer records that exit suggest that tropical Pacific climate is 

complex, including decoupling of the eastern and western Pacific ENSO components, 

significant decadal variability in ENSO, and changes in the overall strength of the 

Southern-Oscillation and its teleconnections [Cole et al., 1993]. 

Many proxies have also been used to reconstruct the El Niño variability, such as corals, 

ice cores, varved sediments, tree rings, sclerosponges, and historical documents. These 

proxy records extend the length of the climate record beyond the short period of 

instrumental coverage and reveal long-term climatic trends more reliably. Long coral 

records indicate that ENSO has varied considerably in strength over the past millennium, 

with changes occurring rapidly on timescales of decades. Given this long-term 

perspective, ENSO events in the twentieth century appear to have been relatively strong, 

but not exceptionally so [Cobb et al., 2003]. There is increasing evidence that the ENSO 

cycle may have been weak, or even absent, between about 14,000 and 5,000 years ago 

[Sandweiss et al., 1996; Rodbell et al., 1999; Tudhope et al., 2001; Moy et al., 2002; 

McGregor and Gagan, 2004; Brijker et al., 2007]. Other researches also indicated a 

general increase in interannual variability to the late Holocene [McGlone et al., 1992; 
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Shulmeister and Lees, 1995; Sandweiss et al., 2001]. Moy et al. [2002] and Woodroffe 

et al. [2003] suggested that warm ENSO events become more frequent over the 

Holocene until about 1,200 years ago. ENSO may also have been generally weaker 

during the cooler conditions of the last glacial period (100,000–20,000 years ago) 

[Tudhope et al., 2001]. Coral records also show that in the last interglacial period 

(124,000 year ago), when the global climate was slightly warmer than at present, the 

ENSO was robust and ENSO frequency was similar to that in modern instrumental 

records before the mid-1970s, but distinct from the most recent period [Hughen et al., 

1999].  

Apart from the above-mentioned variability at the decadal, centennial, and longer-term 

timescales, ENSO-like variability at millennial timescale has also been found in tropical 

regions. Moy et al. [2002] found that periods of relatively high and low ENSO activity 

alternated at a timescale of 2,000 years and Stott et al. [2002] showed that the salinity of 

the western Pacific Warm Pool varied in accord with the millennial timescale 

Dansgaard/Oeschger cycles over Greenland. 

E. Cause and origin of ENSO variability 

There are different interpretations on the observed behaviours of the ENSO in the past. 

A modeling study has suggested that ENSO variability over the middle to late Holocene 

was largely a response to orbitally driven changes in the seasonal cycle of solar 

radiation in the tropics [Clement et al., 2000]. The model results even suggested that 

under certain orbital configurations of the past, variability associated with El 

Niño-Southern Oscillation physics can abruptly lock to the seasonal cycle for several 

centuries, producing a mean sea surface temperature change in the tropical Pacific that 

resembles a La Niña. This change in SST would have a global impact and abrupt events, 

such as the Younger Dryas, may have been the outcome of orbitally driven changes in 

the tropical Pacific [Clement et al., 2001]. Another model which simulated a reduced 

ENSO intensity in the early and mid-Holocene also showed that suppression of the 
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ENSO was caused by higher insolation and resulting intensification of the Asian 

summer monsoon or a warm water subduction from the south Pacific into the equatorial 

[Liu et al., 2000]. 

Tudhope et al. [2001] proposed a dual control for ENSO consisting of a “glacial 

dampening” component and an orbital precession component would explain all the 

major features of the observed palaeo-ENSO data. The evolution from weak ENSO in 

the early-middle Holocene to strong and variable ENSO today was related to 

processional effects. Moderate ENSO strength around 38 to 42 ka, 85 ka, and 130 ka 

was the net result of the competing effects of glacial dampening and processional 

enhancement. The relatively weak ENSO around 112 ka resulted from neutral 

procession effects and strong glacial dampening. 

Moy et al. (2002) attributed the long-term trend of weakening ENSO over the Holocene 

to orbitally induced changes in insolation, and suggested internal ENSO dynamics as a 

possible cause of the millennial variability. 

Based on the high-resolution coral climate record during the last millennium, Cobb et al. 

(2003) found that the inferred changes in ENSO strength did not appear to be correlated 

with documented changes in Northern Hemisphere regional climate — for instance, the 

Little Ice Age (seventeenth to nineteenth centuries) or the Medieval Warm Period 

(eleventh to fourteenth centuries). Nor did they seem to tie in with reconstructions of 

volcanic and solar behavior that might drive climate change. They concluded that the 

majority of ENSO variability over the last millennium may have arisen from dynamics 

internal to the ENSO system itself. 

F. The future of ENSO 

The recent unusual behavior of ENSO, including the exceptionally strong warm events 

of 1982-83 and 1997-98 and the predominance of El Niño-like conditions during the 

past two decades [Trenberth and Hoar, 1996], has highlighted the possibility that ENSO 
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may be influenced by anthropogenic forcing. Research has indicated that ENSO could 

vary significantly on its own even during a period of relatively little global climate 

change, such as the last millennium [Cobb et al., 2003]. Also, palaeo-ENSO records 

have shown that the ENSO system is sensitive to background climate, such as 

differences between glacial and interglacial periods [Tudhope et al., 2001] and even 

over Holocene [Moy et al., 2002]. Considering that the future is almost certainly going 

to be radically different, with predictions of a 1.5–6.0°C rise in global mean temperature 

within the next 100 years being almost as large as the change since the last glacial 

period [Cubash and A., 2001], it is reasonable that ENSO may well respond to future 

greenhouse warming.  

The realistic hope for predicting the response of ENSO to this warming lies in the use of 

coupled ocean–atmosphere climate models. Some of the best of these models now 

generate a realistic ENSO cycle but produce a wide range of predicted outcomes for 

ENSO in a warmer world, ranging from a significant strengthening of the cycle to no 

effect, or even a weakening. In order to obtain more successful modeling, more proxy 

climate records, like those from fossil corals, are crucial. 

3.2.3  The Asian-Australian monsoon 

The term monsoon was originally applied to the seasonal reversals of wind directions 

along the shores of Indian Ocean. Now its definition has been broadened to include 

almost all of the phenomena associated with the annual weather cycle on the tropical 

and subtropical continents of Asia, Australia, and Africa and adjacent seas and oceans 

[Webster et al., 1998]. The inherent seasonality of the monsoon results in cool/dry 

winters and warm/wet summers over the continents. These seasonal changes in 

atmospheric circulation and precipitation also affect the ocean, leading to strong 

seasonality in current strength and direction, sea-surface temperature (SST) and salinity 

patterns [Wang et al., 2005]. 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                           37 

 

Figure 3.8  The modern monsoon system. (A) distribution of modern monsoonal regions in Asia, Africa and 

Australia ([Black, 2002]). (B) pressure and surface wind patterns in winter and (C) in summer [Wang et al., 2005] 
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Even though early studies considered the monsoon to be a regional physical entity, the 

trend in modern monsoon studies has been toward an understanding of the ‘global’ 

monsoon by studying the dynamic links between regional subsystems [Meehl, 1987; 

McBride, 1998; Webster et al., 1998; Trenberth et al., 2000; Clemens et al., 2003; 

Chang et al., 2004], The most active Indian, East Asian, and Australian monsoons are 

now often referred as one macroscale phenomenon of the Asian-Australian monsoon 

with the tropical convective maximum undergoing an annual migration from over north 

India in July to Indonesia and northern Australia in January [Meehl, 1987; Hung et al., 

2004; Chang et al., 2005]. A quasi-biennial variability (2 – 3 year period centred at 2.6 

years, referred as the tropospheric biennial oscillation – TBO) has been found to be a 

fundamental characteristic for the Asian-Australian monsoon rainfall in all the India, 

East Asia, Indonesia, and Australia subsystems [Meehl, 1997; Webster et al., 1998 and 

references there; Meehl and Arblaster, 2002]. There is considerable seasonal persistence 

from the south Asian to Australian monsoon with a strong south Asian or Indian 

monsoon tending to precede a strong northern Australian monsoon and vice versa for 

weak monsoons [Meehl and Arblaster, 2002; Loschnigg et al., 2003; Hung et al., 2004]. 

Sumba is located in the pathway of the annual migration of the Asian-Australian 

monsoon convective centre. The Intertropical Convergance Zone (ITCZ) migrates from 

over the South Asian subcontinent in July to Sumatra in November, to Java in December, 

and then to Sumba and north Australia in January and early February [Meehl, 1987; 

Huang and Mehta, 2004; Chang et al., 2005]. 

3.2.4  Indian Ocean Dipole 

The recently discovered Indian Ocean Dipole (IOD) mode is a coupled air-sea 

interaction within the Indian Ocean. During these events, an interannual climate 

anomaly is characterized by a sea surface temperature anomaly (SSTA) of opposing 

sign in the western and eastern tropical Indian Ocean [Saji et al., 1999] and strong zonal 

wind anomalies in the equatorial Indian Ocean region [Saji et al., 1999; Webster et al., 
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1999; Murtugudde et al., 2000]. Satellite-derived and in situ observations have 

confirmed that these events are associated with sea level [Rao et al., 2002; Feng and 

Meyers, 2003] and rainfall anomalies [Saji et al., 1999; Saji and Yamagata, 2003] 

having a structure similar to the SSTA. 

 

Figure 3.9  The Indian Ocean Dipole Mode [Webster et al., 1999]. 

A mode has been presented to account for Indian Ocean Dipole events by Webster et al. 
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[1999], as shown in Figure 3.9. Initiation of an IOD event involves an unusual 

intensification of the southeasterly monsoon winds off the southwestern Indonesian 

coast which enhances local upwelling, raises the thermocline, and reduces the SST. 

Cooler waters in the eastern Indian Ocean gives rise to easterly winds along the equator 

(these winds are normally westerly) enhancing the cooling in the eastern equatorial 

Indian Ocean and promoting warming in the western equatorial Indian Ocean. The 

western warming involves the generation of an Ekman ridge around 10°S which then 

propagates westward. Westward propagating Rossby waves contribute to the warming 

process in the west by suppressing local upwelling. Kelvin waves are speculated to play 

a role in the initial elevation of the eastern thermocline. This mode implies an 

out-of-phase development of the SST extrema in the eastern and western Indian Ocean, 

so the Indian Ocean Dipole mode is also referred as Indian Ocean Zonal Mode (IOZM; 

Clark et al., 2003). 

 

Figure 3.10 Comparison of Indian Ocean Dipole events and ENSO for the period 1958-1998 [Saji et al., 1999]. 

The dipole mode index (DMI, plotted in blue) is moderately correlated with the ENSO (represented by Nino3 SST 

anomalies, black line). On the other hand, zonal wind anomalies across the equatorial Indian Ocean (Ueq, plotted in 

red) coevolves with the DMI. 

The Indian Ocean Dipole can be identified using a simple index, the Dipole Mode Index 

(DMI), which describes the difference in SST anomaly between the tropical western  

Indian Ocean (10°N-10°S, 50°E-70°E) and the tropical south-eastern Indian Ocean 
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(Equator-10°S, 90°E-110°W) [1999]. The zonal wind anomaly (Ueq) over the equatorial 

central and eastern Indian Ocean (5°N-5°S, 70°E-90°E) is also a feature of dipole events. 

During 1958 to 1998, large amplitudes of the dipole occurred in 1961, 1967, 1972, 1982, 

1994, and 1997, as shown in Figure 3.10. The IOD appears to have a complicated 

relationship with ENSO, occurring at times of ENSO extrema and at other times when 

the Pacific Ocean was not anomalous (as shown in Figure 3.10). Saji et al. [1999] and 

Webster et al. (1999) suggest that this mode results from the air-sea interactions of the 

Indian Ocean itself and is independent of the ENSO. Coupled atmosphere-ocean general 

circulation modelling (CGCM) results suggest that the coupled Indian Ocean-Monsoon 

system itself is capable of producing the Indian Ocean dipole mode without forcing 

from ENSO. However, ENSO is capable of changing the dominant timescales of the 

Indian Ocean dipole mode [Yu et al., 2002]. Model experiments also show that the 

Indian Ocean-Monsoon system can modulate the amplitude and frequency of ENSO and 

produce interdecadal ENSO variations [Yu et al., 2002]. The further work of Saji and 

Yamagata [2003] indicates that the IOD is not a part of ENSO evolution in the tropical 

Indian Ocean but both phenomena may interact. They note that ENSO events 

co-occurring with IOD events are much stronger compared to independent events. And 

IOD events that are independent of ENSO have the same strength as those that co-occur 

with ENSO. But the relationship between the IOD and ENSO is still controversial 

because some researchers have found that the zonal SST gradient anomaly is 

significantly correlated with ENSO during the boreal fall [Hendon, 2003] and that East 

African coastal rainfall and SST in the Indian Ocean correlates strongly with ENSO 

during the “short rain” season [Clark et al., 2003]. 

The relationship between IOD and the Asian Monsoon is still unclear. Of the two largest 

dipole events on record, the1961 event was associated with the heaviest Indian monsoon 

in 150 years [Saji et al., 1999], whereas during the 1997 IOD, rainfall over India was 

normal. In fact, Saji et al. [1999] found no statistical relationship between monsoon 

rainfall and the dipole. But it has been found that ENSO-Monsoon relationship is less 

"typical" and more irregular when the role of the Indian Ocean is considered [Yu et al., 
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2002]. Modeling by Ashok et al. [2001] shows that the IOD plays an important role as a 

modulator of Indian monsoon rainfall, and influences the correlation between the 

monsoon and ENSO. Their result indicates that whenever the ENSO-monsoon 

correlation is low (high), the IOD-monsoon correlation is high (low). 

Recent research also indicates that IOD events may even have important impacts on 

global climate. The strong local coupling of variables with the Indian Ocean suggests 

that the IOD may be an important determinant of regional climate fluctuations on 

interannual timescales [Saji and Yamagata, 2003]. Whenever the Indian Ocean Dipole 

Mode Index is positive, it leads to drought over the Indonesian region and heavy rain 

over East Africa [Saji et al., 1999]. Black et al.[2003] and Clark et al. [2003] have 

shown that the IOD may significantly modulate rain over many African countries during 

boreal fall and early winter. Ashok et al. (2001a) and Ashok and Saji (2007) have 

demonstrated that positive IOD events may enhance summer monsoon rainfall over 

India. Zubair et al. [2003] showed a strong and robust association between the Sri 

Lankan “Maha” rainfall and the IOD from 1869 to 2000. Saji and Yamagata [2003] also 

showed that land temperature and rainfall are anomalously high over countries west of 

the Indian Ocean and anomalously low to its east; enhanced rainfall is found over the 

Asian monsoon trough, extending from Pakistan up to southern China. Also noted by 

Saji and Yamagata are IOD impacts on several regions remote from the Indian Ocean; a 

strong correlation was found over Europe, northeast Asia, North and South America and 

South Africa concurrent with IOD events. Over these regions, positive IOD events are 

associated with warm land surface anomalies and reduced rainfall. Modeling by Ashok 

et al. [2003] showed that the IOD has significant impact on the winter rainfall of 

western and southern Australia. Recent research has revealed a strong positive 

correlation between SSTs in the tropical eastern Indian Ocean and Australian rainfall, 

particularly winter rainfall in the southeast of the continent [Nicholls, 1989; Ansell et al., 

2000]. 

Abram et al. [2003] confirmed that modern corals could be used to reconstruct Indian 
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Ocean Dipole events. Their study also showed that Holocene coral records preserve 

similar signals and provide the first evidence that the Indian Ocean Dipole has operated 

since at least the mid-Holocene. The fossil coral records provide evidence that the 

Indian Ocean Dipole system can operate independently of the ENSO, with dipole events 

continuing in the mid-Holocene when ENSO is thought to have been substantially 

weaker than at the present [Abram et al., 2007]. 

3.2.5  Indonesian Throughflow 

The Indonesian Throughflow (ITF) between the western Pacific and the eastern Indian 

Ocean spreads across the Indonesian archipelago [Wyrtki, 1987] (Fig. 2.4). The main 

route for the upper low-salinity, well-ventilated water masses of northern Pacific origin 

passes through the Celebes Sea and the Makassar Strait from the Mindanao current, 

while deeper more saline water masses of southern Pacific origin enter the eastern 

Indonesian Seas through the Molucca and Halmahera Seas [Gordon and Fine, 1996]. 

Then three main passages open the Indonesian waters to the Indian Ocean. The Lombok 

Strait involves the upper layers 0-350 m; the Ombai Strait (3250 m deep) between Alor 

and Timor Islands, and the Timor Passage (1890 m) between Roti Island and the 

Australian continental shelf, allow deeper transports [Molcard et al., 2001a]. 

The magnitude of the Indonesian Throughflow has strong seasonal and interannual 

variations. Maximum flow occurs during the northern hemisphere summer (August) and 

minimum flow during winter (February). ENSO variability is recognized as a dominant 

cause of interannual variability of the Throughflow [Molcard et al., 2001a]. The 

estimated volume of water transport from the Pacific to the Indian Ocean varies 

between 2 and 24 SV (1 Sverdrup, Sv =106 m3s-1) [Tomczak and Godfrey, 1994] or, 

more conservatively, 7 to 18.6 Sv [Murray and Arief, 1988]. Direct measurements had 

been made in three normal years (weak ENSO years) and the yearly total transports 

through the three main outflow passages were 11.2 Sv, including Lombok Strait, 1.7 Sv 

[Murray and Arief, 1988]; Timor Passage, 4.5 ± 1.5 Sv [Molcard et al., 2001a] and 
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Ombai Strait, 5 ± 1 Sv [Molcard et al., 2001a] with an uncertainty of the order of 3 Sv. 

 

Figure 3.11  Pathways of the Indonesian Throughflow [Gordon, 2005]. 

The Indonesian Throughflow has long been a focus of considerable research interest 

from local, regional and global perspectives. Locally, there are large changes in 

water-mass structure within the Indonesian Seas, because of surface freshwater input, 

bottom friction, and mixing by vigorous tidal currents over sills. Regionally, it is 

important to understand how the throughflow and its variability relate to neighboring 

current systems in the western Pacific and near Australia, particular regarding the 

Leeuwin Current. Globally, it is considered one of the choke points of the global ocean 

circulation system, and its variability is believed to affect climate on interannual and 

longer time scales [Schott and McCreary, 2001]). 

The Indonesian Throughflow modifies the heat and fresh-water budgets and air-sea heat 

fluxes of the Pacific and Indian Oceans, and may exercise a role in the El Niño/Southern 

Oscillation and Asian monsoon climate phenomena [Wajsowicz and Schneider, 2001]. 
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The Indonesian Throughflow shifts the Indo-Pacific Warm Pool and centre of deep 

atmospheric convection to the west by increasing surface temperatures in the eastern 

Indian Ocean and reducing temperatures in the equatorial Pacific. This control on sea 

surface temperature and deep convection affects atmospheric pressure in the entire 

tropics and, via atmospheric teleconnections, in the mid latitudes. As a result, surface 

wind stresses in the entire tropics change and meridional and zonal gradients of the 

tropical thermocline and associated currents increase in the Pacific and decrease in the 

Indian Ocean. The response includes an acceleration of the equatorial undercurrent in 

the Pacific, and a deceleration in the Indian Ocean. Thus the Indonesian Throughflow 

exerts significant control over the global climate in general, and the tropical climate in 

particular. An example of this impact is that recent research indicates that during the 

boreal winter monsoon, the wind drives buoyant, low-salinity Java Sea surface water 

into the southern Makassar Strait, creating a northward pressure gradient in the surface 

layer of the strait. This surface layer “freshwater plug” inhibits the warm surface water 

from the Pacific Ocean from flowing southward into the Indian Ocean, leading to a 

cooler Indian Ocean sea surface, which in turn may weaken the Asian monsoon 

[Gordon et al., 2003].  

Given that it is located in one of the most important ocean-flow pathways, the SST and 

salinity around Sumba will be strongly affected by the variability of the Indonesian 

Throughflow and it will be directly recorded by the Sumba corals. 

3.2.6  South Java Current and remote forced Kelvin waves 

During northwestern monsoon season, heavy rainfall and strong input of runoff from the 

Indonesian islands such as Sumatra and Java make the surface salinity near the coast is 

up to 3 psu lower than in the open Indian Ocean [Wyrtki, 1973]. The published data 

demonstrate a very warm, fresh surface layer in the coastal water and the salinity is 33.8 

psu which is much fresher than the Indonesian inner sea Banda Sea Water (salinity is 

34.4 psu) [Fieux et al., 1994b; Bray et al., 1997; Sprintall et al., 1999; Sprintall et al., 
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2000]. The reduced salinity gives rise to a cross-shore pressure gradient, driving a 

south-easterly baroclinic coastal jet [Quadfasel and Cresswell, 1992]. The monsoonal 

winds, in turn, force an eastward or westward boundary current during the summer and 

winter, respectively. That is the formation of the semi-annually reversing South Java 

Current (SJC) [Quadfasel and Cresswell, 1992] (Figure 3.12). 

 

Figure 3.12  Oceanic currents around Sumba: the South Java Current (SJC, blue double headed arrow) and 

outflows of the Indonesian Throughflow (ITF, blue arrows). The red star marks the study area: the southern side of 

Sumba Strait. 

The SJC is particularly interesting as it is closely related to the sea-level along the south 

coast of the lava - Nusa Tenggara island chain, and thus affects the overall pressure 

difference from the western Pacific that is widely thought to govern the mean 

throughflow and its low frequency variations [Sprintall et al., 1999]. The SJC reverses 

to south-eastward flow semi-annually around May and November, probably through the 

propagation of coastal and equatorial Kelvin waves forced by westerly wind bursts 

during the monsoon transitions in the equatorial Indian Ocean. At these times, the SJC 

has been found to consist of narrow cores of accelerated flow extending to depths of ~ 

150-250 m, and 90 nm south of Java to ~ 10oS and the boundary with the westward 
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flowing South Equatorial Current (SEC) [Fieux et al., 1994a; Meyers et al., 1995]. 

South of Java, historical data reveal the occurrence of a very warm, fresh surface layer 

(salinities ~ 33.8) [Sprintall et al., 1999], too fresh to be the Throughflow Banda Sea 

Water (~ 34.4) [Fieux et al., 1994b]. Below this freshcap, in the thermocline and at 

depth, relative saline (~ 34.65) North Indian Intermediate Water is often found [Bray et 

al., 1997]. During the south-east monsoon period (June-October) the SJC is 

north-westward, slower and in the same direction as the SEC and throughflow [Sprintall 

et al., 1999]. 

In summary, the changing monsoon winds and the variations of the freshwater flux from 

the Indonesian archipelago are responsible for the annual cycle of the flow, while the 

actual reversals between the seasons are strongly influenced by remote forcing through 

equatorial and coastal long waves from the central Indian Ocean [Quadfasel and 

Cresswell, 1992]. 

During the monsoon transition periods of April/May and October/November. westerly 

wind bursts in the equatorial western Indian Ocean force the semiannual eastward 

Wyrtki Jet [Wyrtki, 1973]. The source waters of the jet stem from the western tropical 

Indian Ocean, delivered into that region by the SEC. The Wyrtki jet is weaker during the 

October/November transition period when the Somali Jet in the Arabian Sea 

appropriates some of the SEC flow [Wyrtki, 1973]. The equatorial and surface-confined 

Wyrtki Jet generally sets up within a week after the westerly wind onset, and the 

oceanic adjustment to the wind forces an associated downwelling Kelvin wave. Directly 

observed speeds of the jet have ranged from 0.7 to 2.1 m/s [Wyrtki, 1973; Michida and 

Yoritaka, 1996], which is roughly commensurate with the first model baroclinic mode 

equatorial Kelvin wave speed of 19 m/s, which may have been modified by the mean 

currents. The Kelvin wave transits from the western equatorial Indian Ocean in about a 

month to impinge the west coast of Sumatra on the equator in Indonesia. Subsequently, 

it excites a reflected Rossby wave back into the Indian Ocean as well as northward and 

southward propagating coastally trapped Kelvin waves that correlate directly with 
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observed coastal sea level rises along the coasts of Sumatra and Java [Clarke and Liu, 

1993; 1994]. The fate of the southward propagating coastally trapped Kelvin waves 

once it reaches the south coast of java and its impact on the Indonesian internal seas and 

the throughflow are areas of active debate [Murtugudde et al., 1998; Qiu et al., 1999]. 

The main issues of contention are twofold: (1) the nature of the "gappy" island 

boundary of southern Indonesia and whether it permits the Kelvin waves to enter and 

affect the circulation of the interior Indonesian seas and (2) the modulation of the 

Kelvin wave signal by the semiannually reversing South Java Current and the 

throughflow itself. In addition, the role of local versus remote forcing within the 

Indonesian seas remains a controversial issue [Sprintall et al., 2000]. 

Even though early studies have noticed that the eastward flow of the semi-annually 

reversing boundary current SJC could reduce the transport of the ITF [Meyers et al., 

1995], it had not been confirmed if the Indian Ocean water enters into the Indonesian 

seas through the Sumba Strait for a long time until the recently reported eastward flows 

in the Ombai Strait [Molcard et al., 2001b] and in the Sumba Strait [Hautala et al., 2001] 

measured using current metres in December 1995, May 1997, and March 1998. 

Question that still remains is, did those detections disclose a routine penetration or just 

an occasional incursion of the SJC/the remote forced Kelvin waves into the Savu Sea? A 

historical record is needed to answer this question. 
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CHAPTER 4 

TWO DISTINCT PROCESSES OF U-SERIES ISOTOPIC DIAGENESIS 

IN A SINGLE FOSSIL CORAL COLONY AND 

MODEL CORRECTION AGE 
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ABSTRACT 

Multiple measurements of U-series isotopes in skeletal sub-samples within a single 

Porites coral were made to explore the diagenetic behaviour of U-series isotopes in 

fossil corals from the raised reefs of Sumba, Indonesia. Detailed analysis of two 

diagenetic stages and corresponding changes in U-series isotopic composition has 

revealed two distinct processes of U-series isotope diagenesis in this single coral colony. 

Both of them are different from those suggested before. The earlier process involved 

addition of allochthonous dissolved 234U and 238U together with addition of detrital 

non-radiogenic 230Th, while the later process was clearly connected to loss of 234U and 

238U occurring along to loss of detrital-bound 230Th. Locally radiogenic 230Th appears to 

have played an important role in maintaining a constant 234U/230Th when percolating 

groundwater with allochthonous U and a high 234U value entered the coral at the earlier 

stage. On the other hand, detritus-bound 230Th was critical to maintain a fixed 234U/230Th 

when percolating meteoric water dissolved coral skeletal U at the later-stage. The results 

suggest that a mechanism like diffusion or osmosis controlled the addition or loss of 

dissolved U and detrital Th in the coral by way of a solute concentration gradient. This 

mechanism explains the constant 234U/230Th ratios in situations involving either the 

addition or loss of U. Model correction ages could be determined for both processes and 

they yield essentially the same age of 133.6 ka for the early highstand of Termination II. 

This detailed study serves to substantiate the isochron model [Scholz et al., 2004], and 

provides insight into the way by which the 234U/230Th ratio can remain constant when U 

is added to or lost from corals during diagenesis. 
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4.1   INTRODUCTION 

Since the U-series method was established to date coral using thermal ionisation mass 

spectrometry (TIMS) [Edwards et al., 1986/87; Edwards et al., 1987a], it has been 

widely applied to aid the reconstruction of sea levels [Bard et al., 1996; Stirling et al., 

1998; Esat et al., 1999; Cutler et al., 2003] and paleoclimates [McCulloch et al., 1999; 

Tudhope et al., 2001]. The fundamental premise of U-series dating is that corals 

incorporate substantial seawater uranium and negligible thorium into their aragonite 

skeletons during growth, and remain subsequently closed to uranium and thorium loss 

or gain [Broecker, 1963]. While modern corals faithfully record seawater 234U/238U 

[Chen et al., 1991], the fossil corals often do not reflect closed-system evolution from a 

modern seawater 234U/238U ratio [Bender et al., 1979; Edwards et al., 1987a; Ku et al., 

1990; Bard et al., 1991; Henderson and Cohen, 1993; Thompson et al., 2003]. Recently, 

U-series dating of U-rich continental slope sediments from the Bahamas suggested that 

seawater 234U has remained within 15‰ of the modern value (~145‰) for the last 360 

ka [Henderson, 2002]. However, 234U measured in fossil corals spans a wide range of 

values, thus the established opinion is that the premise of closed system behaviour is not 

warranted [Bard et al., 1992; Stirling et al., 1995; Scholz et al., 2004]. Even though 

some researchers have not found general correlations between 234U values, the 

measured 230Th/238U activity ratio, and calculated 230Th age [such as Chen et al., 1991], 

others have found correlations between 234U, 230Th/238U, and 230Th age [Bender et al., 

1979; Hamelin et al., 1991a; Bard et al., 1992; Stein et al., 1993; Zhu et al., 1993; 

Gallup et al., 1994; Stirling et al., 1995; Cheng et al., 1998; Fruijtier et al., 2000; 

Henderson et al., 2001; Stirling et al., 2001; Thompson et al., 2003; Villemant and 

Feuillet, 2003; Potter et al., 2004; Scholz et al., 2004].  

Various scenarios have been developed to explain U-series isotopic anomalies in reef 

corals. Some authors have studied the effects of gain and loss of 238U and 230Th [Chen et 

al., 1991; Hamelin et al., 1991b; Bar-Matthews et al., 1993; Henderson and Cohen, 
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1993]. Ku et al. [1990] developed a model which takes into account gain or loss of both 

234U and 238U through continuous exchange with uranium in groundwater or soil water. 

Bender et al. [Bender et al., 1979] and Gallup et al. [Gallup et al., 1994] presented 

models where 234U and 230Th are continuously added to the corals, while Cheng et al. 

[1998] modelled continuous/episodic uranium gain and loss relative to 230Th or 

continuous addition of 234U and 230Th. The models showed that if samples of the same 

age experience different degrees of one of the above-mentioned processes, the U-series 

data will fall along a curve that approximates a straight line near the upper intercept in a 

concordia diagram. In this case, the upper intercept will be the true crystallization age of 

the samples. 

 

Figure 4.1  (A) Mondu V coral reef. Dotted line marks an erosion surface above the Mondu V coral reef.  (B) The 

half exposed large Porites coral MV03-A-2 which is still in growth position. Note the big crack through the coral 

from top to bottom. 
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Recently three correction models have been published to more rigorously 

quantify open-system U-series ages. Villemant and Feuillet [2003] propose 

a model that takes into account possible initial 230Th excess where 

continuous selective redistribution (gain or loss) of 234U, 234Th and 230Th is 

controlled by recoil processes. Thompson et al. [2003] present a 

quantitative model where the positive correlation between 234U/238U and 

230Th/238U activity ratios is explained by coupled addition of 

particle-reactive 234Th and 230Th, which is produced by decay of dissolved 

uranium and -recoil mobilisation of uranium daughters. Scholz et al. 

[2004] have developed a new model which combines uranium uptake and 

loss, the latter being proportional to the amount of uptake, which explains 

their data and produces characteristic isochrons. They show that the ‘true’ 

age of the coral can be calculated from the intersection of the isochron and 

the seawater evolution curve. 

In this chapter, I report on multiple measurements of U-series isotopes in 

skeletal sub-samples within a single fossil Porites coral to explore the 

diagenetic behaviour of U-series isotopes during two recognisable stages of 

post-depositional alteration. Detailed analysis of the relationship between 

the diagenetic stages and the corresponding changes in U-series isotopic 

composition has revealed two distinct processes of U-series isotope 

diagenesis in this single coral colony. Both of them are different from those 

previously reported in the literature. 

Figure 4.2 X-ray photo of 7 mm slab of core drilled into coral MV03-A-2c. Numbered yellow boxes 

denote positions of sub-samples collected for U-series dating. Red circle marks a calcite patch. 

White lines with Roman numerals indicate the sub-sampling transects for stable isotope analysis. 
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4.2   MATERIALS AND METHODS 

4.2.1 Coral sampling 

Four large Porites corals were found exposed in a steep wall of a deep valley ~1.5 km 

from the north coast of Sumba, Indonesia. The corals are positioned 39 m above modern 

mean sea level and still in their original growth positions (Figure 4.1). Colony 

MV03-A-2 is 1.2 m in diameter, 1.1 m in height and particularly well exposed. A 

prominent crack cuts through the coral from top to bottom (Figure 4.1B).  

 

Figure 4.3  Optical microscopic image of petrographic thin-section of fossil coral MV03-A-2c (top) compared with 

image of modern local Porites coral RSM2b (bottom). Red bar represents 2 mm. 

Two calcitized cores “a” and “b” were drilled before an exceptionally well-preserved 

core “c” was retrieved. The 1.1 m long core “c” was slabbed and one of the most 

pristine spots in the middle section was chosen to U-series date the coral (“c1” yellow 
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box in Figure 4.2). The 230Th age of this sub-sample was not reliable enough so eight 

more sub-samples were selected to produce a model correction age for this coral (3 

more from core c, 4 from core a, and 1 from core b). 

4.2.2 Coral preservation 

The coral slab show excellent preservation under natural and UV light with only one 

small patch of calcite (Figure 4.2).  

Sub-samples from core c show only traces of calcite and aragonite content is >98%, as 

measured by X-ray diffraction at The Australian National University. Sub-samples from 

cores a and b were not measured by X-ray diffraction, but were chosen from the least 

altered parts of the cores where calcite contents were estimated to be <5% by visual 

check under UV light. Even though there is slight dissolution and slight calcite 

overgrowths in some parts of the core, the smooth septal walls and radial-fibrous 

structure of aragonite centres of calcification indicate excellent preservation of this coral 

skeleton. Figure 4.3 shows the impressive similarity between this fossil coral and a 

modern Porites coral (RSM2b) living on a nearby reef, indicative of extraordinarily 

good preservation for a very old Porites coral that has been exposed to both submarine 

and subaerial environments for a long time. 

4.2.3 U-series isotopic measurement and age determination  

The U-series method [Edwards et al., 1986/87] was applied to obtain the U-series 

isotopic composition and 230Th ages of different sub-samples in fossil coral MV03-A-2. 

However, both open-system [Thompson et al., 2003] and isochron age [Scholz et al., 

2004] models failed to achieve a reliable age for this coral. Therefore, a detailed 

analysis of U-series isotopic characteristics of this coral was performed, which provided 

an excellent opportunity to understand the behaviour of U-series isotopes after the 
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coral’s death. This analysis laid the foundation for the final determination of the age of 

this fossil coral by choosing appropriate correction models.  

U-series measurements were performed using the multi-collector ICP-MS instruments 

at RSES, ANU and the Department of Geosciences, National Taiwan University 

following chemical procedures reported by Luo et al. [1997] and McCulloch and 

Mortimer [2008], or by Edwards et al. [Edwards et al., 1987b], and MC-ICP-MS 

measurement protocols [Stirling et al., 2001; Shen et al., 2002; McCulloch and 

Mortimer, 2008]. The “U-2” mixed 229Th and 233U spike or double spike 233U-236U-229Th 

were used to spike each dissolved coral sub-sample and a PE TRU or an anion exchange 

resin (BioRad 1-X8, 100 – 200 mesh, 0.6 – 1.0 ml column) ion exchange column was 

used to separate the elements. The 230Th age and initial 234U were calculated using 

ISOPLOT Excel add-in written by K.R. Ludwig with half-lives of 230Th, 234U, and 

238U following Cheng et al. [2000]. The Isochron and open-system model ages were 

calculated according to Scholz et al. [2004] and Thompson et al. [2003]. 

4.3  RESULTS 

A sub-sample from the most pristine part of core MV03-A-2c (sub-sample c1 in Figure 

4.2) was first chosen to be dated and its conventional 230Th age is 136.8 ± 1.5 ka with a 

back-calculated initial 234U value of 158.9‰ (Table 4.1, sub-sample c1). Given that 

this initial 234U value is near the range of 234U values measured for modern seawater 

and recent corals (136‰ to ~151‰, ave. 145-149‰ for different measurements) [Chen 

et al., 1986; Edwards et al., 1986/87; Chen et al., 1991; Ludwig et al., 1991; Gallup et 

al., 1994; Szabo et al., 1994; Cheng et al., 2000; Stirling et al., 2001; Muhs, 2002; 

Robinson et al., 2004], the U-series age of this sub-sample should be close to the true 

age of this fossil coral. In fact, for old fossil corals many researchers have considered a 

230Th age to be reliable if its initial 234U is within the range of 149 ± 8-10‰ [For 

example, Gallup et al., 1994; Stirling et al., 1998; Stirling et al., 2001; Esat and 
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Yokoyama, 2006] or 146 ± 8‰ [Cutler et al., 2003]. Stirling et al. [1998] have also 

shown no significant difference for 230Th age reliability for corals with initial 234U of 

149 ± 10‰ and concluded that the 149 ± 10‰ range is acceptable for most coral 

dating studies. 

Table 4.1 

U-Th isotopic composition and calculated ages for sub-samples of fossil coral MV03-A-2 

ID1 
Distance 

(cm)
 2

 

238U 

(ppb) 

232Th 

(‰) 

234Um
3 

(‰) 

[230Th/238U] 

(activity) 

230Th/232Th 

( x10-6 ) 4 

230Th age 

(ka) 

234Ui 
3 

(‰)

O-S age 

(ka) 5 

c1 55 2541 ± 4 159  107.9 ± 1.7 0.805 ± 0.004 210374 ?????????????? 136.8 ± 1.5 158.9 ± 2.4 131.7 ± 1.9 

c2 60 3672 ± 4 276 ± 2 109.5 ±1.4 0.803 ± 0.002 176405 ± 1623 135.7 ± 0.8 160.8 ± 1.9 129.8 ± 1.4 

c3 84 3902 ± 6 357 ± 3 135.6 ±1.7 0.854 ± 0.003 154194 ± 1166 145.5 ± 1.1 204.6 ± 2.3 121.8 ± 2.3 

c4 40 3439 ± 5 271 ± 2 104.0 ± 1.8 0.843 ± 0.002 176626 ± 1649 151.3 ± 1.1 159.5 ± 2.5 145.7 ± 1.8 

a1 54 3477 ± 6 234 ± 3 106.9 ± 1.3 0.841 ± 0.003 206577 ± 3061 149.9 ± 1.1 163.3 ± 1.9 142.7 ± 1.5 

a2 63 3528 ± 6 360 ± 3 109.0 ± 1.2 0.847 ± 0.003 136944 ± 1366 151.3 ± 1.0 167.1 ± 1.7 142.5 ± 1.5 

a3 68 3323 ± 6 285 ± 3 119.1 ± 1.4 0.888 ± 0.003 170655 ± 2094 163.7 ± 1.3 189.1 ± 2.1 145.3 ± 2.1 

a4 75 3153 ± 5 196 ± 3 115.8 ± 1.3 0.911 ± 0.003 241960 ± 4069 175.0 ± 1.3 189.9 ± 1.9 155.9 ± 2.1 

b1 46 3304 ± 7 221 ± 4 123.4 ± 1.8 0.877 ± 0.003 216830 ± 3533 157.8 ± 1.4 192.7 ± 2.5 138.2 ± 2.3 

Measurements were isotope dilution runs using a mixed 233U-229Th tracer calibrated against the Harwell Uraninite (HU-1) 

secular equilibrium standard. Decay constants are 9.1577 x 10-6 yr-1 for 230Th, 2.8263 x 10-6 yr-1 for 234U, and 1.55125 x 

10-10 yr-1 for 238U (Cheng et al., 2000). Analytical errors are 2 of the mean. 

1 Letters (a, b, c) indicate sub-sample is from core a, b, or c and data from different cores are separated by dotted lines. 

Measurement of sub-sample c1 was made using the MC-ICP-MS at RSES, ANU following chemical and instrumental 

protocols similar to Luo et al. [1997] and Stirling et al. [2001]. All the other sub-samples were analyzed using similar 

protocols by Chuan-Chou Shen and Chih-Wei Chen at the Department of Geosciences, National Taiwan University. 

2 Distance of sub-sample from the top of the core. 

3 234Um is measured value and 234Ui is back-calculated initial value. 
4 The degree of detrital 230Th contamination is indicated by the [230Th/232Th] atomic ratio instead of the activity ratio. 

5 Open system (O-S) ages and errors were calculated using a spreadsheet provided by W. Thompson [Thompson et al., 

2003] with an assumed initial 234U value of 146.6‰ [Stirling et al., 1998; Robinson et al., 2004]. 

According to the observation of Gallup et al. [1994], the true age of coral MV03-A-2 

might be only slightly younger than 136.8 ka. Gallup et al. [1994] suggested that if a 

coral hypothetically began with an initial 234U value of 149‰ but ultimately has a 

initial 234U value of 153‰, it has experienced open-system conditions and may be 

biased toward an older age by about 1000 yr. Accordingly, the age of coral MV03-A-2 
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might be between 133 ka and 134 ka [133.4 ka if a value of modern coral and seawater 

234U of 148.9‰ [Stirling et al., 1998] is applied, or 133.7 ka if a more recently 

measured value of 146.6‰ [Robinson et al., 2004] is applied]. 

Whatever the true age of this coral is, it is probable that it grew in a very special period 

called Termination II (or penultimate deglaciation), which followed the penultimate 

glacial maximum (>140 ka) and ended at the Last Interglacial Maximum (< 128 ka) 

[Martinson et al., 1987; Muhs, 2002; Brauer et al., 2007]. There is now considerable 

evidence suggesting that sea-level and mean climate changed dramatically within a few 

thousands of years during the penultimate deglaciation [Esat et al., 1999; Gallup et al., 

2002; Antonioli et al., 2004; Siddall et al., 2006]. Thus a highly accurate age for coral 

MV03-A-2 is needed to better understand the significance of the climatic and oceanic 

conditions recorded by this uncommon coral. 

Towards this goal, more sub-samples from this core and other cores from the same coral 

colony were selected and analysed by MC-ICP-MS at the National Taiwan University. 

U-series isotopic compositions for all the sub-samples and calculated conventional 

230Th ages are listed in Table 4.1. The analyses revealed a range of U-series isotopic 

compositions for different parts of the same coral. The U contents vary from 2.5 ppm to 

3.9 ppm and the 232Th concentrations of the sub-samples vary by a factor of two. All the 

sub-samples were chosen from well preserved parts of the cores and most of them 

satisfied the so-called “strict” screening criteria (U 2.1-3.8 ppm, 232Th <2 ppb, calcite 

<2%; [Stirling et al., 1998; Scholz and Mangini, 2007]. The calculated conventional 

230Th ages changed from 136 ka to 175 ka for this single coral and have a surprising 

difference up to ~40 ka. The initial 234U values varied from 158.9 to 204.6, indicative 

of not only open-system behaviour for all the sub-samples but also significant 

differences in the degree of diagenetic alteration of U-series isotopes in this single coral. 

As a result, among sub-samples in this single coral head there is no linear array on a 

234U/238U and 230Th/238U isotope ratio diagram (Figure 4.4) which has been observed for 

many different corals of the same age on raised reefs worldwide [Bender et al., 1979; 
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Hamelin et al., 1991a; Bard et al., 1992; Gallup et al., 1994; Stirling et al., 1995; Cheng 

et al., 1998; Henderson et al., 2001; Stirling et al., 2001; Thompson et al., 2003; 

Villemant and Feuillet, 2003; Potter et al., 2004; Scholz et al., 2004]. Therefore, it is 

impossible to achieve a more reliable age for this coral by directly applying the newly 

published isochron model [Scholz et al., 2004] where a single isochron line is needed to 

determine a model age. It is also difficult to obtain a reliable age from the other two 

correction models recently suggested by Thompson et al. [2003] and Villemant and 

Feuillet [2003], both of which explain the linear array by assuming that -recoil 

controls the mobility of U-series isotopes. Table 4.1 lists the calculated open-system 

correction ages which showed discrepancies of up to 30 ka for the sub-samples. The 

result implies that this kind of decay-dependant addition of 234Th and 230Th should not 

be the only process involved in the diagenetic alteration of coral MV03-A-2. 

In summary, the detailed analysis of the U-series isotopes in MV03-A-2 provided a 

good opportunity to explore the post-depositional alteration of the U-series isotopic 

composition in this coral. The following section discusses the characteristics and 

changes in U-series isotopic composition for the sub-samples. The correlation between 

U-series isotopic composition and sub-samples position, and degree of diagenetic 

alteration, will be explored. Two distinct post-depositional processes affecting U-series 

isotopes will be put forward followed by the determination of a more reliable age for 

this coral based on the new understanding of the diagenetic processes. 

4.4  DISCUSSION 

4.4.1 Two groups of U-series isotopic composition 

Even though a consistent age could not be determined by direct application of any of the 

recently published correction models [Thompson et al., 2003; Villemant and Feuillet, 



Chapter 4: Two Distinct Processes of U-series Isotopic Diagenesis 

60                                   The Australian National University 

2003; Scholz et al., 2004], it seems that there are two groups of data on the 234U/238U - 

230Th/238U diagram (Figure 4.4). Group one is comprised of sub-samples c1, c2, and c3 

form core c. Group two includes all the sub-samples from core a (a1, a2, a3, and a4). 

Sub-sample c4 is also close to this group and the sub-sample from core b is between the 

two groups, but closer to group two. 
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Figure 4.4   Correlation diagram of 234U/238U and 230Th/238U activity ratios in coral MV03-A-2. Analysis of two 

groups of sub-samples (red and blue) from different cores through the coral demonstrates that two distinct diagenetic 

processes have altered the 234U/238U and 230Th/238U activities. The red line is the linear regression for 3 sub-samples 

from core “c” while the blue line is the regression for all 4 sub-samples from core “a”. The different slopes for the two 

data sets (Sc = 3.6*Sa) are indicative of two distinct diagenetic pathways. Independent “isochron” ages were determined 

by intersecting the regression lines with the seawater evolution curve. The results show that both sample groups yield 

essentially the same model age of 133-134 ka. Error bars for individual data points are 2. 

There is a positive correlation of 234U/238U and 230Th/238U within each group, with two 

distinct slopes. Does the positive correlation imply a common mechanism of diagenesis 

for these sub-samples? One asks this question because there are only 3 or 4 points 
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within each group, which is not enough for us to conclude by the grouping behaviour in 

the 234U/238U - 230Th/238U projection. However, the different slopes of the correlations 

suggest there were two diagenetic processes involved in altering this single coral. What 

were they and how did they proceed?  

Detailed analysis of all the data shows (apart from the grouping in the 234U/238U - 

230Th/238U projection) that these sub-samples fall into distinct two groups in almost all 

aspects of the data (Figure 4.5), as follows: 

1. Group one U content increases with depth of sub-samples in the coral, while it 

decreases with depth in Group Two, especially for a2, a3, and a4 (Table 4.1); 

2. The 232Th concentration has the same trends as for U content (Table 4.1); 

3. All sub-samples show a strong correlation between U and 232Th contents, but the 

correlation within each group is even stronger and the lines of fit have different 

slopes (Figure 4.5A); 

4. 232Th is strongly correlated with 230Th within group two, including sub-samples c4 

and b1, while group one shows strong correlation but with a dramatically different 

slope (Figure 4.5B); 

5. Even though there is a strong correlation between 230Th and 232Th for both groups, 

group one shows a weak correlation between 230Th/232Th and 232Th concentration, 

and in group two the ratio increases with decreasing 232Th content. 

6. U content strongly correlates with 230Th within each group, but the two slopes differ 

by a factor of 3.6 (Figure 4.5D); 

7. Figure 4.5E demonstrates strong correlation between 230Th/238U and 238U within 

group two, but only a weak correlation within group one, and the slopes are very 

different. 
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Figure 4.5 Two distinct groups of U-series isotopic behaviour have been displayed in the correlation diagrams of 

U-series isotopic ratios and their contents in fossil coral MV03-A-2. Numbered red squares represent sub-samples 

from core “c” and blue dots represent sub-samples from core “a”. Green triangle denotes a sub-sample from core “b”. 

Error bars are 2 of the mean. Red thin lines are linear regression of data for 3 sub-samples from core “c” (c1, c2, 

and c3) and blue thin line are linear regression of data for 3 sub-samples from core “a” (excluding a1). Correlation 

coefficient r2 is shown along with each regression line. The distinct difference between the two slopes of the 

regression lines in each plot is shown as an equation with Sc standing for slope of core “c” data, while Sa for slope of 

core “a”. 
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8. In contrast to the behaviour of 230Th/238U and 238U content, 234U/238U and 238U 

content are moderately correlated in both groups with different slopes (Figure 

4.5F). 

9. When calculating open-system ages for the sub-samples applying the Thompson et 

al. model, there is somehow consistency within each group, but a significant 

discrepancy occurs between the two groups: in group one the corrected ages are 

younger than the preliminary age (133-134 ka) obtained for the most pristine 

sub-sample c1, while in group two the correction ages are older than the 

preliminary age (Table 4.1). 

In summary, this detailed analysis of the U-series data has confirmed that there are two 

distinct modes of diagenesis influencing U-series isotopic behaviour in this coral. 

4.4.2 Sample position, degree of alteration, and U/Th behaviour 

When observing all the trends in the data, it is important to note that all the changes in 

232Th, 238U, 230Th, and even the calculated open-system ages keep two fixed orders: for 

group one all trends are in the order c1  c2  c3, and for group two in the order a2  

a3  a4. These orders are the same as order of the sub-samples in the coral cores, and 

thus imply that the U-series isotopic processes are related to the position of the 

sub-samples in the coral. It also implies that the processes are related to the mobilization 

of the U-Th isotopes along certain paths within the coral after it was buried, rather than 

by initial uptake of 230Th when the aragonite skeleton formed. This provides a good 

opportunity to explore how the diagenetic processes might connect the sub-samples 

with the directions of change in U-Th isotopes. 

As shown in the photos in Figure 4.1, this coral had been buried for a long time before it 

was exposed. The extraordinarily well-preserved core c indicates that this coral colony 

has not been exposed for very long. Photo B also showed a large crack from the top to 
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the bottom of the colony. Given that core c is well-preserved, while other cores in the 

same colony are obviously diagenetic altered, it is likely that the crack developed after 

the coral was exposed. Figure 4.6 illustrates the positions of the cores and the 

sub-samples. Core a was drilled in the centre of this colony but was badly calcitized in 

many parts of the core. I could only find aragonite sub-samples for U-Th dating in the 

lower-middle section (sub-samples a1-a4 Figure 4.6B). Core b was then drilled close to 

core a, but closer to the crack. This core was seriously altered and, as a result, only one 

aragonite sub-sample could be selected for U-Th dating. Core c was also drilled close to 

core a, but farther away from the crack. This turned out to be a high quality core with 

only one small calcite patch in the lower middle section. At first we chose three well 

preserved sub-samples in the middle and lower sections (c1, c2, and c3 in Figure 4.2 

and 4.6B), then we selected the forth sub-sample c4 in the upper section. Sub-sample c4 

is slightly discoloured and appears slightly dissolved, as reflected by lower skeletal 

density in X-ray photos of the core (Figure 4.2).  

Since the distance between the cores is only less than 20 cm, the big difference in 

diagenetic alteration between these cores demonstrates that the diagenetic process which 

calcitized the aragonite skeleton was strongly related to the crack. It also shows that 

aragonite skeleton only tens of centimetres away from the crack could effectively resist 

the diagenetic process. 

Compared to all sub-samples, c1 appears to be the most unaltered in terms of pristine 

colour and texture. The U-series results are consistent with this observation in that 

sub-sample c1 has the (1) lowest detrital 232Th content, (2) initial 234U value close to 

modern seawater and modern coral, and (3) lowest U content (2541 ppb) which is 

almost equal to that of modern corals in nearby Sumba reefs (range 2478-2663 ppb, M. 

Gagan unpublished data, Appendix C). Since some of other sub-samples are only tens of 

centimetres away from sub-sample c1 (e.g. c2 or a1 in Figure 4.6B), it is evident that 

the Porites aragonite skeleton is effective in resisting the incursion of both the 

diagenetic processes. Given its central position, the most likely candidate for another 
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diagenetic process (apart from that strongly related to the crack) should be a process 

entering the coral from outside by all directions. It is reasonable to imagine that the 

colony had been buried for a long time before the fossil reef was raised by tectonic 

uplift and then half exposed by valley incision followed by cracking because of its 

exposure. Therefore, it is plausible to think that the process which affected the core c 

sub-samples by invading the coral from outside occurred earlier than the process related 

to cracking of the coral which impacted the core a sub-samples. 

4.4.3 Two distinct diagenetic processes 

Owing to the strong correlation between the contents of U and detrital 232Th (Figure 

4.5A), and the fact that the U contents in other sub-samples are all higher than in local 

modern Porites corals, it is logical to suggest that some kind of uranium-rich 

groundwater had permeated through the coral and left some fine detritus (or some kind 

of colloid incorporated with detrital Th) within the aragonitic skeleton in a early stage 

when the coral was buried. Due to the resistance of the aragonite skeleton, and the fact 

that the groundwater would soak into the colony from the entire surface of the buried 

coral, the impact of this process should decrease symmetrically towards the central part 

having the least U and detritus contents. The source of the U-rich groundwater should 

be abundant in the fossil reef environment where this coral was buried. But when the 

coral was half exposed and cracked, this process would have been overpowered by 

meteoric water entering the coral, especially through the crack and the top surface. 

Accordingly, the permeation of the late-stage, relatively clean meteoric water would 

subsequently remove dissolved U and the fine detritus or colloid. This process would 

make the contents of U and detrital 232Th lower in sub-samples closer to the surface or 

the crack, which is consistent with the U-series isotope results. 

In summary, the evidence suggests that two distinct diagenetic processes were involved 

in the U-series isotopic post-depositional behaviour in coral MV03-2-A. Figure 4.5 

illustrates both processes and they can be preliminarily described as follows: 
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 Process One: uranium-rich groundwater permeated into the buried coral through the 

outer surface from all directions at an early stage. The groundwater derived from 

the local fossil reefs and was rich in U and had a relatively high 238U value; it also 

transported fine detritus or colloids with foreign (non-radiogenic) 232Th into the 

skeleton. The amount of additional U and detritus in the coral is proportional to the 

distance to the surface where the percolating water starts to enter the coral. 
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Figure 4.6  Cross-sections illustrating the position of the cores and sub-samples and two diagenetic processes 

that occurred after the burial of fossil coral MV03-A-2. (A) Top view of the coral colony. Grey bar represents the 

crack through the colony from top to bottom; Circles with letters represent cores “a”, “b”, and “c” extracted from the 

coral. Blue arrows show the incursion of meteoric water from the crack and the size of arrow depicts how the process 

impacted the sub-samples because of the resistance of the aragonite skeleton. Dashed line marks the position of the 

cross-section shown in panel B. (B) Cross-section of the coral colony. Orange and blue bars represent core “c” and 

“a”, respectively. Red squares show the position of sub-samples in core “c” and blue dots the sub-samples in core “a”.  

Orange arrows represent the incursion of U-rich groundwater from all directions in an earlier stage when the coral 

was still buried. 

 Process Two: after the coral was half exposed and cracked as a result of tectonic 

uplift and valley incision at a later stage, meteoric water soaked into the colony 

mainly through the crack and the upper surface. Given that meteoric water would 

mainly result from rainfall or runoff from the upper slope of the valley, contents of 
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234U, 238U and the detrital Th should be very low or even zero in this water. 

Subsequently it would dissolve away U from the aragonite texture and remove 

detritus or colloids which had been taken into the coral by percolating groundwater 

during the earlier Process One, while radiogenic 230Th remained in the aragonite 

skeleton due to its insolubility. The amount of U and detritus dissolved by the 

percolating meteoric water is also related to the distance of the spot in the coral to 

the surface or crack where the water started to enter the coral. 

In the projections shown in Figures 4.4 and 4.5, the two diagenetic processes make the 

isotopic composition of the sub-samples change along distinct trends or directions. 

Detailed analysis and comparison of the distinct U-series isotopic behaviours of the two 

groups would provide opportunity for further understanding the mechanisms involved 

in diagenesis. Table 4.2 summarises the changes in U-series isotopes produced by the 

two distinct processes. The major aspects of the diagenetic mechanisms include the 

following: 

1. Percolating water as a transport medium and osmosis rules followed 

The transport medium for U-series isotopes was most likely the percolating water, 

which took dissolved U and fine detritus or colloids (Th was bound in it) into or out of 

the Porites coral down a solute concentration gradient following rules of diffusion, such 

as osmosis. Thus the addition of dissolved U and detritus into the coral would occur 

when the percolating water contains higher concentrations than the coral itself, while 

loss would occur when the percolating water has relatively low concentrations of 

dissolved U and detritus. It also means that the addition or loss of dissolved U into the 

coral aragonite should be a dynamic equilibrium process in which the addition and loss 

proceed at the same time, but the equilibrium should be controlled by the osmotic 

pressure. Not only would the osmotic pressure control the amount of percolating water 

(and the dissolved U and fine detritus) within the coral, but also the net amount of 

addition/loss into/out of the coral aragonite. This mechanism is the most plausible 

process that explains all the data, especially the strong correlation between the change in 
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U-series isotopic composition with distance of the sub-samples from the surfaces where 

percolating water entered the coral. 

2. Remobilization of U and Th 

Both allochthonous U and Th were transported into the coral at a relatively early stage 

in its burial history, while both U and Th were removed from the coral at a later stage, 

as shown in Figure 4.5A by the strong correlation between detrital 232Th and 238U. The 

results of this study show that 234U, 238U, 232Th, and 230Th were all involved in the 

addition or loss in both processes, with their redistribution being distinctly different in 

the two processes. 

3. Large input of extraneous, locally radiogenic 230Th in Process One 

Figure 4.5B shows a strong correlation between the contents of 230Th and detrital 232Th, 

suggesting addition of extraneous 230Th in Process One. The large difference in the 

slopes indicates a large amount of this input from an external source. If changes in the 

amount of 232Th were fixed for both processes (addition or loss), then the change in 

amount of 230Th in Process One would be 23.2 times greater than the change in Process 

Two (Table 4.2).  

Figure 4.5C illustrates that in Process One the 230Th/232Th increased along with the 

increasing addition of 232Th, while in Process Two it also increased during the loss of 

232Th (Figure 4.5B), which means that the contents of 230Th apparently increased 

relative to 232Th in both situations. The latter fact implies that the relative increase in 

230Th occurred due to loss of U, while the former confirms that extra 230Th other than 

the non-radiogenic, detritus-binding 230Th had been added into (in Process One) or lost 

from the aragonite (in Process Two). Since the insolubility of 232Th in water is just like 

that of 230Th, the probable cause of the relative increase in 230Th in Process One should 

be the loss of dissolved 234U and 238U in the percolating groundwater, while in Process 

Two the apparent increase of 230Th relative to 232Th should result from dissolved 234U 

and 238U, which would have produced 230Th if they had not been dissolved and taken 
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away from the aragonite. The plausible mechanism for the locally radiogenic 230Th 

would be -recoil decay from the dissolved 234U and 238U followed by absorbing to the 

aragonite texture owing to its particle-reactive character [Henderson et al., 2001; 

Thompson et al., 2003]. 

Radiogenic 230Th directly decayed from extra 234U should have played an important role 

in keeping the 234U/230Th ratio constant for the earlier-stage Process One. 

Table 4.2 

Comparison of changes in isotopes involved in the two processes of diagenesis 

Nuclide 

if in fixed content 

Nuclide or ratio 

in change 

Comparison of rate of changing 

(Process One / Process Two) 
Data source 

 234U/230Th 3.6 Figure 4.4 
232Th 238U 3.3 Figure 4.5A 
238U 230Th 7.2 Figure 4.5D 
232Th 230Th 23.2 Figure 4.5B 
232Th 230Th 23.76 (= 3.3 x 7.2) Calculated 
238U 234U 25.92 (= 3.6 x 7.2) Calculated 
232Th 234U 83.52 (= 3.6 x 23.2) Calculated 
232Th 234U/238U 25.3 (= 83.52 / 3.3) Calculated 
232Th 230Th/238U 7.2 (= 23.76 / 3.3) Calculated 
232Th 234U/230Th 3.5 (25.3 / 7.2) Calculated 

4. Input of allochthonous U with higher 234U in Process One 

The large input of allochthonous locally radiogenic 230Th in Process One implies even 

larger input of extraneous 234U and 238U. Actually, all the plots in Figure 4.4 and 4.5 

reflect the likelihood that the early-stage percolating groundwater brought into the coral 

high concentrations of U and that its 234U value was higher than that of the coral 

aragonite. 

The increase of 234U/238U activity ratio along with the addition of 238U in Figure 4.4 is 

indicative of a higher 234U value in the percolating groundwater in Process One. Even 
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though the change in 234U/230Th ratio roughly keeps fixed values for both processes, the 

ratios are different for the two groups. The change in the 234U/230Th ratio in Process One 

is 3.6 times of that in Process Two, indicating that in Process One extra 234U relative to 

both to 238U and 230Th was provided from the percolating water. However, in Process 

Two the percolating water did dissolve the same proportion of 234U compared to 238U 

and 230Th as their addition in Process One. The most plausible source of the extra 234U 

in Process One should be the dissolved 234U in the percolating groundwater. 

The difference in the slopes (Figure 4.5A) demonstrates that in Process One 3.3 times 

the amount of extraneous 238U was added to the coral relative to the amount of 238U 

dissolved in Process Two. In contrast, Table 4.2 shows that the change in the amount of 

234U in Process One would be 84 times larger than that in Process Two (3.6 x 23.2 = 

83.52 or 3.6 x 23.76 = 85.53), if the involved 232Th change was fixed for both processes. 

Accordingly, the change rate of 234U/238U ratio in Process One was 25.3 times that in 

Process Two if the 232Th concentration was constant. 

The U-rich groundwater and its relatively high 234U value should result from the local 

fossil coral reefs when it percolated through them before entering the buried coral. The 

higher 234U value might result from (1) the high 234U of fossil reefs because of their 

ages, and/or (2) the preferable entering of 234Uinto the percolating water due to -recoil 

decay of 238U[Moore, 1967]. 

5. Percolating meteoric water as transport medium in Process two 

The late-stage percolating water contained low U concentrations so it removed U from 

the coral aragonite and the earlier-stage removed detritus from (instead of added to) the 

coral down a solute concentration gradient according to the rules of osmosis. The most 

plausible source of the percolating water would be direct rainfall or runoff from the 

upper slopes of the coral terraces. When this meteoric water percolated through the 

coral, it would remove both 234U and 238U and their ratio should be similar to the ratio in 

the sub-samples because of their similar solubility and chemical characteristics. 
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6. Small amount of allochthonous non-radiogenic 230Th involved 

This study suggests that, even though allochthonous non-radiogenic 230Th (binding in 

the fine detritus or colloid along with the detrital 232Th) was involved in both processes, 

the amount was very small compared to detrital 232Th. The loss of non-radiogenic 230Th 

played an important role in deciding the ratio of 234U/230Th in Process Two; in contrast, 

it was insignificant in comparison with the extraneous radiogenic 230Th in Process One. 

In both situations, both processes helped keep 234U/230Th constant and were important in 

model age determination. 

Figure 4.5D clearly shows the loss of 230Th in Process Two accompanying the loss of 

238U even though the amount of lost 230Th is small. Due to its insolubility in water, the 

removed 230Th must be adsorbed to fine detritus or colloids where detrital 232Th was 

present. This was also confirmed by the data for this coral (Figure 4.5B) where 232Th 

and 230Th are strongly correlated. These results clearly demonstrate that, even though 

the amount of detrital 230Th was small in comparison with the lost 232Th and 238U, the 

loss of 230Th indeed happened in Process Two. The results demonstrate the ratio of 

232Th/230Th in detritus would be 83.3 based on the slope. Considering that added 

non-radiogenic 230Th in the early-stage Process One (if there was any) would remain 

together with the detritus due to its insolubility, and given the very high 232Th/230Th 

ratio in the detritus (83.3), the large discrepancy between the two slopes (23 times, as 

shown in Figure 4.5B) also implies that the content of non-radiogenic 230Th in fine 

detritus or colloids along with detrital 232Th is insignificant compared to content of 

radiogenic 230Th decayed from 238U or 234U which added to coral during early-stage 

Process One. 

To keep a roughly invariable ratio of 234U/230Th when both the 234U and 238U were 

increasingly removed, Process Two had to increasingly remove 230Th from the coral. In 

despite of the insignificant contribution of the allochthonous non-radiogenic 230Th to the 

230Th/238U ratio in Process One because of the addition of high-concentration U, the 

contribution of detritus-bound 230Th in Process Two is significant because its loss kept 
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the 234U/230Th ratio as a roughly constant value when 234U was increasingly lost. It had 

impact because the lost U did not have high concentration in the percolating meteoric 

water in Process Two. It kept the 234U/230Th ratio constant because the removed U and 

detritus was roughly kept at a proportion which is reasonable if both of them were taken 

away by the percolating meteoric water. Even though the detritus-bound 230Th would 

partly derived from the decay of U in the percolating water or coral, it is rational to 

deem that the added detritus or colloid in Process One at a earlier stage would contain 

small amount of allochthonous non-radiogenic 230Th which was from the environmental 

fossil reefs and part of them had lost together with the detritus in Process Two at a later 

stage. The contribution of the non-radiogenic 230Th would not affect the 234U/230Th ratio 

in Process One, but had significant effect on the ratio in Process Two. 

7. Osmotic pressure, dynamic equilibrium, and fixed 234U/230Th ratios 

The result has demonstrates that the contents of extraneous detrital 230Th in Process One 

is insignificant compared with the extraneous but locally radiogenic 230Th. So the 

234U/230Th ratio in Process One (slope of the red line in Figure 4.4) is only affected by 

the 234U value of the percolating groundwater. Since both 234U and 238U decay to 

produce 230Th, the U content should be too high to keep a roughly constant 234U/230Th 

value, if equal amount of 234U, 238U and their -recoil decay-produced 230Th were added 

into the aragonite texture. Scholz et al. [2004] suggested a explanation for a similar 

situation that a later loss of the added U occurred and speculated that the loss would be 

proportional to the earlier-stage addition and would be occurred at a same time for all 

the sub-samples. Since the result of this coral clearly exhibits an increase in U-content, 

an alternative explanation might be more possible for this coral: even though the 

high-concentration U groundwater kept entering the coral during the whole period when 

the Process One proceeded, the addition and loss of dissolved U into the aragonite 

texture would both happened because of U’s solubility in water but would reach a 

dynamic equilibrium at some time point for a certain spot of the coral where the amount 

of addition and loss of U would be equal and no net addition of U would be occurring. 

The decay-produced 234Th and 230Th from the dissolved U would continue to be adding 
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to the texture because the percolating groundwater was still providing dissolved U, 

however, there was no loss of the added Th because of its insolubility. Therefore extra 

addition of Th relative to U would happen. Since the amount of entered groundwater 

into a specific spot followed the rules of osmosis (osmotic pressure), the amount of 

dissolved U and the then the decay-produced Th reached at this specific spot would be 

related to the distance of the spot from the surface where the water started to enter. 

Since the dynamic equilibrium was also controlled by the osmotic pressure, the net 

amount of added U into the aragonite texture would also be related to the distance of the 

spot from the surface where the groundwater started to enter, which was exactly shows 

by the data of this coral. Consequently, it would just look like that the loss of U is 

proportional to the addition of U. 

Figure 4.4E shows very strong correlation between 230Th/238U activity ratio and 238U 

content for Process Two (r2 = 0.99) but only weak correlation (r2 = 0.36) for Process 

One, further illustrate that the Process One was involved significant addition of extra 

230Th which has nothing to do with 238U decay by path of 234U and 234Th. Unlike the 

230Th/238U activity ratio - 238U diagram, the 234U/238U activity ratio - 238U projection 

illustrates that both processes have moderate correlation between 234U/238U activity ratio 

and 238U contents (coefficients r2 are 0.45 and 0.49 for Process One and Two 

respectively). For Process One, the reason is that there was an extra decay line 

(extraneous 234U directly decayed) along with the 238U decay line; for Process Two, it 

confirms that the same extra decay line contributed to the change in 234U/238U activity 

ratio, suggesting the taking away of 234U along with the taking away of 238U. It is 

reasonable given their similar dissolubility and chemical characters. 

Owing to the very strong correlation between 230Th/238U activity ratio and the content of 

lost 238U (r2 = 0.99), and the moderate correlation between 234U/238U activity ratio and 

the content of lost 238U (r2 = 0.49), Process Two kept a strong correlation between 

230Th/238U and 234U/238U (r2 = 0.74 as shown in Figure 4.4A). The data of sub-samples 

which experienced both the earlier and later processes would array roughly to form a 
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straight line (“loss line”) on the 230Th/238U - 234U/238U plot. 

4.4.4 Model correction ages 

This study presents two distinct processes of U-series isotopic diagenesis in a single 

coral colony. Both processes produced linear relationships in a 234U/238U - 230Th/238U 

activity ratio diagram whether or not U and Th are added to or lost from the coral. Since 

both the intersection points of the trend lines with the seawater evolution curve 

represent a coral which experiences no addition or loss of uranium and thorium, and the 

corresponding activity ratios represent a closed system, the true age of the coral could 

be calculated from either of the intersection points [Gallup et al., 1994; Cheng et al., 

1998; Scholz et al., 2004]. 

As shown in Figure 4.4, a linear regression line was fitted to data for 3 sub-samples in 

core c which experienced Process One to produce the “addition line” of allochthonous 

234U and 238U. It intersects the seawater evolution curve at a point corresponding to 

133.4 ka. Also, a linear regression line was fitted to data for 4 sub-samples of core a 

which experienced Process Two at a later stage to produce the “loss line” of U and Th. 

This line intersects the seawater evolution curve at a point corresponding to 133.7 ka. 

Given the measurement errors, it is concluded that the distinct processes give the same 

model correction age, which reinforces the reliability of the model ages. Therefore, an 

average value of 133.6 ka is used to describe the age of this coral. 

7.5 SUMMARY 

Despite minor alteration of the mineralogy and petrology for nine sub-samples from a 

single fossil Porites coral which grew during the penultimate deglaciation in Sumba, 

Indonesia, the results of U-series isotopic measurements tell a different story. The data 

display diverse U-series isotopic compositions within the single coral and no consistent 

conventional 230Th ages could be determined. No consistent correction ages could even 

be obtained for the sub-samples by applying any of the recently published correction 
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models [Thompson et al., 2003; Villemant and Feuillet, 2003; Scholz et al., 2004], 

indicative of the complicated diagenesis involved. 

Given that this coral presents excellent stable isotopic records of the climate and 

oceanography in the Indo-Pacific Warm Pool, a more reliable date is highly desirable. In 

fact, the multiple measurements on sub-samples of this coral provided a good 

opportunity to explore the diagenetic behaviour of U-series isotopes in coral because it 

evidently experienced two distinct stages of post-depositional alteration. Detailed 

analysis of the relationship between the diagenetic stages and the corresponding 

changes in U-series isotopic composition has revealed two distinct processes of U-series 

isotope diagenesis in this single coral colony. 

The results strongly suggest that a mechanism like diffusion or osmosis controlled the 

addition or loss of dissolved U and detrital Th into or out of the coral by water 

percolating down to a solute concentration gradient. The addition or loss of U-series 

isotopes is dependent on the concentration of the dissolved U and detritus in the 

percolating water. The amount of the added or lost U and detrital Th for a specific spot 

of the coral is controlled by the distance of the spot from the surface where the water 

starts to enter the coral. The absorption of dissolved U into the coral skeleton and the 

dissolution of the bound U from the coral proceed simultaneously and when they reach 

a dynamic equilibrium, the net addition or loss stops. 

During the early stages of diagenesis, the percolating groundwater deposited into the 

coral a large amount of 238U, and an even larger amount of 234U, because of the 

relatively high concentration of U and 234U in the percolating groundwater, which had 

filtered through the local fossil reefs. It also deposited in the coral fine detritus or 

colloids with detrital 232Th and a small amount of 230Th. The small amount of 

allochthonous non-radiogenic 230Th is insignificant for the U/Th isotopic composition 

because of the large input of locally radiogenic 230Th, a decay-product from the 

extraneous, highly concentrated dissolved 234U and 238U. The radiogenic 230Th was 

absorbed into the aragonite texture owing to its particle-reactive nature and -recoil. 
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Even though the dissolved 234U and 238U are the only significant sources of 230Th, this 

process kept the 234U/230Th ratio constant in any spot in the coral. This constant ratio 

could be well explained by the osmosis mechanism: the osmotic pressure controlling net 

addition of U into the coral aragonite would stop when a dynamic equilibrium was 

reached, while the addition of radiogenic 230Th would continue to increase as the 

groundwater continued to provide dissolved U and the added 230Th would not redissolve 

due to its insolubility. 

In the later stages of diagenesis, the coral was exposed and split because of tectonic 

uplift and valley incision. Meteoric water from rainfall or runoff from the slopes above 

soaked into the coral mainly from the crack and the top surface. Meteoric water contains 

no or low concentrations of U, detritus or colloids. Accordingly, following the osmosis 

rules, the percolating meteoric water dissolved away both 234U and 238U from the coral 

but left the insoluble 230Th in the coral. The lost U had a 234U/238U close to that of the 

aragonite texture. The dilute meteoric water also took away detritus or colloids which 

entered the coral during earlier-stage diagenesis and bound 232Th and small amount of 

230Th. Since this study shows apart from a comparable change in 232Th the involved 

changes in 234U, 238U, 230Th were much smaller in this process than that in the earlier 

process given a fixed amount of percolating water, the loss of detritus-bound 230Th was 

no longer insignificant for the change of the U/Th isotopic composition; in contrast, it 

played an important role in keeping the 234U/230Th ratio roughly invariable among all 

the sub-samples whatever the amount of lost U and Th, because the amount of lost 

detritus-bound 230Th very strongly correlated with the amount of lost 238U and 

moderately correlated with that of lost 234U following the osmosis rules. 

Both diagenetic processes produced a linear relationship between 234U/238U - 230Th/238U 

in an activity ratio diagram when U and Th had been added to or lost from the coral. 

Given that the intersection of these trend lines with the seawater evolution curve 

represent a coral which experiences no addition or loss of uranium and thorium, and the 

corresponding activity ratios represent the closed system, the true age of the coral could 
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be calculated from the intersection points. Both intersection points give essentially the 

same model age of 133.6 ka. 

This suggested mechanism explains the constant 234U/230Th ratios in situations 

involving either the addition or loss of U. This detailed study serves to substantiate the 

isochron model [Scholz et al., 2004], and provides insight into the way by which the 

234U/230Th ratio can remain constant when U is added to or lost from corals during 

diagenesis. 
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CHAPTER 5 

LATE QUATERNARY HISTORY  

OF THE MONDU RAISED CORAL REEFS IN SUMBA, INDONESIA 
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ABSTRACT 

Large numbers of well-preserved Porites coral cores have been retrieved from the 

Mondu raised coral reefs of Sumba, Indonesia, indicating their potential as 

high-resolution paleoclimate records. Detailed topographic surveys and field 

observations provide new insights into the stratigraphic relationships and physiography 

of the raised reefs. Fifty-four coral samples have been measured for U-series isotopic 

composition, and the ages of these reefs have been determined by combining 

stratigraphic analysis and U-series age model corrections. 

This study demonstrates that the isochron model of Scholz et al. [2004] could be well 

applied to determine the ages of the Mondu raised reefs. The results also indicate that 

the slopes of the isochrons of the reefs on the 234U/238U – 230Th/238U plot reflect their 

histories of burial and exposure. The slopes of the Mondu reefs display two distinct 

groups; steep isochrons are evidently connected to reefs experiencing long-term burial, 

while gentle isochrons are connected to reefs with no history of burial. This finding has 

served to help determine the ages of reefs whose ages could not be directly determined 

by the isochron model alone. 

The results support a constant uplift rate of 0.49 m/kyr for the Mondu raised reefs since 

~260 ka, although the rate may be higher during MIS 5a/5b and lower during 5c. This 

study demonstrates that some high-quality Porites cores have been retrieved from the 

exposed Mondu reefs. Promising time-periods for high-resolution palaeoclimate records 

include the interstadials and stadials of MIS 5, the early highstand during Termination II, 

highstands in glacial MIS 6, and even a late highstand during glacial MIS 8. 
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5.1   INTRODUCTION 

Sumba is an exposed part of the outer arc ridge produced by the active subduction of the 

Indian-Australian plates beneath the Pacific plate [Fitch and Hamilton, 1974]. It is 

separated from Australia by the Java Trench - Timor Trough, and from the volcanic 

ridge of the Sunda-Banda island-arc to the north by an outer arc basin (the Savu Sea). 

The collision of the plates and the upheaval of the outer arc ridge result in the uplift of 

the palaeo-reefs and the formation of the flights of raised coral terraces on the north 

coast of Sumba. An exceptional 1-million-year-long sequence of coral reef terraces has 

been reported at Cape Laundi (Figure 5.1) between sea level and an ancient patch reef 

475 metres above sea level [Pirazzoli et al., 1991; Pirazzoli et al., 1993]. Using 

uranium-series and electron spin resonance dating, they deduced a local uplift rate of 

0.49 m/kyr which remained almost constant during at least the last million years and in 

any case at least until the last interglacial period. They credited the possibility of dating 

those very old fossil corals to the dry local climate, especially the pronounced winter 

dry-season which tends to slow down the processes of diagenesis in fossil corals, 

leaving some of them almost unrecrystallized after 600 ka. 

Our research is focus on the area around Mondu village, about 10 km west of Cape 

Laundi, where much more extensive paleo-reef terraces developed between 0 m and 80 

m above mean sea level (Figure 5.1) than that at Cape Laundi between the same 

altitudes, possibly due to the gentler underwater slope, more nutrition and sedimentary 

output through Mondu River. Three major field investigations in the past 14 years have 

been conducted in this area by Dr Michael Gagan and his team and a wealth of modern 

and fossil coral cores have been retrieved from the modern and raised reefs, providing 

an excellent opportunity for reconstruction of climate and oceanography. 

Figure 5.1 (next page)  Sumba Island and the Mondu Raised Coral Reefs (shown as red stars). The contour 

shows the topographic elevation and the numbers represent the altitudes of platforms in this area. The blue star is the 

village of Mondu and the blue line is the main road of this area. Transection AB (red line) is depicted in Figure 5.3.
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The age determination of the corals is the basis for paleoclimate reconstruction and has 

always been a challenge for any effort to retrieve climate information from corals old 

than Holocene because most of the information is from the massive Porites coral which 

has loose texture and is more liable to the impact of diagenesis for its U-Th isotopes 

than the carriers of climate information: O/C isotopes and Sr/Ca elements [Bard et al., 

1992; Stirling et al., 1995; Edwards et al., 2003]. Tremendous efforts have been tried to 

achieve reliable ages for the U-series altered corals [Gallup et al., 1994; Henderson et 

al., 2001; Thompson et al., 2003; Villemant and Feuillet, 2003; Potter et al., 2004; 

Scholz et al., 2004; Thompson and Goldstein, 2005; Scholz and Mangini, 2006; 2007; 

Andersen et al., 2008] and three models have been published in recent years because of 

their successful application in different cases [Thompson et al., 2003; Villemant and 

Feuillet, 2003; Scholz et al., 2004]. In this chapter I will try to apply one of the models 

to aid to achieve reasonable ages for the cores and the surrounding reefs. 

To determine the age of the coral cores which are of important potential for climate 

reconstruction and to provide guide for future exploration of more long cores, this 

chapter will generally summarize the distribution, elevation, and some stratigraphic 

features of the Mondu Raised Coral Reefs, and determine the age of the reefs by 

combination of using stratigraphic analysis and U-Th age correction models. 

5.2   MATERIALS AND METHODS 

5.2.1  Core drilling 

To date, three field trips to the Mondu raised reefs have been carried out. The fieldtrip 

designed especially for my PhD research was in August/September, 2003. Other two 

expeditions were in 1995 and 1998. 

1995 drilling: Cores were drilled from fossil Porites corals in the raised reefs at Goat 

Site, Mondu I, Mondu II, River Site, and Bridge Site (Figure 5.1) using a fuel-driven 
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Tanaka motor drill with a core diameter of 50 mm. This drilling was reconnaissance in 

style because the length of the cores was limited to the length of one core barrel (50 cm) 

(Appendix A.1).  

1998 drilling: The large RSES water-driven drill was applied to collect 75 mm diameter 

cores from live corals (underwater) and Holocene reefs at River Site and Mutiara Site 

reefs. The portable Tanaka-driven drill (50 mm diameter cores) was also used to drill 

raised reef fossil corals at Mondu I, Mondu III and Mondu IV reefs. The genera of the 

sampled corals are Porites and Diploastrea. A total of 45 coral cores were collected 

from this trip. The longest core is up to 3 metres (MSM-3A). Some long Holocene cores 

were also collected, such as MS1b (2.17 m), RS8 (1.72 m) (Appendix A.2).  

2003 drilling: The portable Tanaka-driven drill was used again to drill cores from all the 

raised reefs indicated on Figure 5.1, including the newly discovered reefs of Mondu V, 

Mondu VI, Mondu VII, Mondu I West, Oasis Site, and Goat Site. 65 coral cores were 

collected during this trip and the total length is up to 36 m. Several high quality fossil 

cores were drilled. Even though their age may be as old as MIS 5e or 6, no obvious 

recrystallized calcite spots have been observed under natural light. The MV03-A-2a, 

MV03-B-2b, MVI03-7a, GC03-1b, and RS03-4 are among the best cores for extracting 

palaeoclimate information. See Appendix A.3 for a summary of the cores. 

5.2.2  Topographic Surveying 

In order to get a better understanding of how the raised coral reefs developed, and their 

possible ages, topographic surveys were carried out using a theodolite during the 2003 

field trip. The elevations of important coral heads, key features of the reefs, and main 

topographic marks have been included in this survey. To check the veracity of the 

results, routes for most of the surveys were designed to return to their starting points 

and the closure errors were calculated. The survey routes are shown in Table 5.1 and the 

good quality of the elevation survey has been proven by the small values of the closure 

errors (1 ~ 5.8 cm) also indicated in this table. 
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Table 5.1 

Survey Routes and Closure Errors 

Surveys Route and Site 
Closure 

Error (cm) 

Goat Site Mutiara Beach to Goat Site (and return) 1.0 

Oasis Site Goat Site to Oasis Site (and return) 3.6 

Beach to Mondu I River Site Beach to  Mondu I (and return) 2.4 

Mondu Raised Reefs 

Mondu I to Mondu V-A to 60m Hill to Mondu VI East to 
Mondu II to +65 m Hill to Mondu VI West to “Favid” Reef to 
West 60 m Hill to Mondu V-B to Mondu V-A to Mondu V-B 
to Mondu IV to Mondu I West to Mondu I 

2.0 

Mondu I West to Mondu III Mondu I West to Mondu III (and return) 5.8 

Mondu II to Mondu VII Mondu II to Mondu VI to Mondu VII  

Mutiara Site Mutiara Holocene reef  

River Site River Site Holocene reef  

 

 

5.2.3  Sampling for age determination  

In addition to materials from Porites cores, well-preserved coral materials were 

collected by hammer and chisel from robust corals, such as Favia, Favites, Platygyra, 

Symphllia, or Diploastrea, to accurately determine the age of the reefs. These genera 

were chosen because they have thick and dense wall which would resist diagenetic 

alteration to the most extent. The samples are all in situ specimens within the same reefs 

containing the Porites cores. 

5.2.4  Screening for diagenesis  

Cores are initially examined under UV light to determine if calcite is present. Even 

minor amounts of calcite can be detected because it emits a distinctive pale-green 

fluorescence under UV light, whereas coralline aragonite emits a pale blue-mauve 

colour. For some samples X-ray diffraction were applied to determine the percentages 

of calcite in the cores. Some of the samples were also checked by thin section analysis 

and scanning electron microscopy.  

To achieve the best results, the most pristine spots of the samples were selected for age 

determination. For corals with thick wall, dental drills were used to remove the loose 
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parts, such as thin walls or dissepiments. 

5.2.5  U-Th dating 

The U-series measurement was carried out using multiple-collector-ICP-MS at 

Research School of Earth Sciences, the Australian National University and Department 

of Geosciences, the National Taiwan University following chemical procedures reported 

by Luo et al. [1997] and McCulloch and Mortimer [2008], or by Edwards et al. 

[Edwards et al., 1987], and MC-ICP-MS measurement protocols [Stirling et al., 2001; 

Shen et al., 2002; McCulloch and Mortimer, 2008]. 

“U-2” mixed 229Th and 233U spike was used to spike each dissolved coral sub-sample 

and a PE TRU ion exchange column was used to separate the elements. The 230Th age 

and initial 234U were calculated using ISOPLOT Excel add-in written by K.R. Ludwig 

with half-lives of 230Th, 234U, and 238U following Cheng et al. [2000]. The Isochron and 

Open-system model ages were calculated according to Scholz et al. [2004] and 

Thompson et al. [2003]. 

11 Holocene Porites cores drilled during the 1995 and 1998 expeditions were 

conventional radiocarbon-dated by Abaz Alimanovic at the RSES Radiocarbon Dating 

Laboratory of the Australian National University. Also, sixteen Holocene and late 

Pleistocene Porites cores have been uranium-series dated by Dr Linda Ayliffe using the 

thermal ionisation mass spectrometry (TIMS) at the Laboratoire des Sciences du Climat 

et de l’Environnement, Gif-sur-Yvette Cedex, France. Both results will be applied here 

in this chapter (refer to Appendix B and C for the results). 

5.3   RESULTS 

5.3.1  Elevation of corals and reefs 
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Table 5.2 shows the survey results including the elevation of important coral heads and 

features of reefs. All elevations are defined relative to base of beach (approximately 

mean sea level). 

Table 5.2 

Elevation of coral colonies and features of reefs 

Reefs Reef ID 
Coral ID 

or key features 

Elevation 

(m) 
Reefs 

Reef 

ID 

Coral ID 

or key features 

Elevation 

 (m) 

Mutiara Site MS Seaward edge -0.5 Mondu I MI MI-1 27.9

MS2 -0.4 MI-4 28.5

MS1 -0.3 MI-2 30.5

MS5 -0.2 MI-3 33.5

MS4 -0.2 MI-6 35.2

MS03-B-1 -0.1 Undrilled Porites  26.5

MS-7 -0.1 Undrilled Porites  27.6

to PS-1 -0.1 Top Porites  40.3

MS-9 0.0 Mondu 

VI 

MVI-A base of reef 36

MS03-A-1 0.1 weathering surface 44

MS-10 0.1 MVI-B base of reef 34

MS-8 0.1 weathering surface 44

River Site RS Seaward edge -1.2 MVI-C MVI03-2 37.9

RS12 -1.0 MVI03-6 38.3

RS13 -0.5 MVI03-7 38.7

RS03-2 -0.4 MVI03-4 39.1

RS8 -0.4 MVI03-3 39.5

RS2 -0.3 MVI03-1 40.7

RS14 -0.3 MVI03-5 40.8

RS10 -0.1 Mondu 

V 

MV MV03-A-2 38.7

RS1 -0.1 MV03-A-3 38.7

RS3 -0.1 MV03-A-1 39.0

RS15 0.0 MV03-B-2 37.5

RS17 0.0 MV03-B-1 42.3

RS6 0.0 Edge of top surface  48

RS5 0.0 Mondu 

IV 

MIV Base 37

RS7 0.0 MIV-1 40.1

RS11 0.1 MIV03-1 41.5

Goat Site GC GC1 7.2 MIV03-2 42.1

GC2 8.3 MIV-2 45.2

Oasis Site OA Base of reef 9 “Favid”  base  44

OA03-4 11.2 top 52

OA03-1 16.5 Mondu 

II 

MII W. base 50

OA03-3 17.4 E. base of MII reef 51

OA03-2 20.2 MII-10 52.4

Mondu III MIII Base of reef 19 MII-8 53.2

MIII-3 22.9 MII-6 53.5

MIII-2 23.6 MII-5 55.3

Top of reef 26.5 MII-4 55.9

Mondu I 

West 

MI West base 20 MII-1 56.8

MI03-B-1 25.6 MII-7 56.9

Top surface 27 MII-9 58.6

Hills  Top of +60m hill 60 MII-2 59.0 

top of MII reef (W) 60

Top of +65 m hill 64 Mondu MVII MVII03-1 54.5 
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5.3.2  U-Th ages and open-system model correction 

Table 5.3 displays results of U-series dating for all the 54 fossil coral samples from 

Mondu raised reefs.  

Even though all the Holocene corals show U-Th close-system behaviour (Appendix C), 

corals from higher raised reefs around the Mondu village exhibit obvious open-system 

behaviour. Only four of them show marginal initial 234U values, and only one coral 

(MI6-03-D-1) is within the usually used ± 8‰ range of acceptable age [Stirling et al., 

1998]. Therefore, the calculated conventional 230Th ages could not serve as reliable ages 

for almost all the Mondu raised coral reefs, which means correction models have to be 

used to achieve reliable ages. 

The open-system model [Thompson et al., 2003] is applied to all the samples and the 

calculated ages are listed in Table 5.3. The model of Thompson et al. [2003] assumes 

that -recoil mobilisation of thorium daughter isotopes 234Th and 230Th is the only U-Th 

alteration process operating within the reef, and there is no presence of initial 230Th. 

However, the application of this model to the Mondu raised reefs shows that no 

consistent open-system correction ages could be achieved for any of the reefs. For 

example, the correction ages for Mondu I reef range from 74 ka to 263 ka. Even for 

subsamples from one single coral colony MV03-A-2, the correction ages change from 

122 to 156 ka and the range of the ages is up to 25% of the average value of the 

correction ages. This result indicates the complexity of diagenetic alteration in the 

Mondu corals. The large discrepancy of the open-system correction ages within a single 

reef and even a single coral colony demonstrates that the open-system model is not 

applicable for age determination of the fossil corals in the Mondu raised reefs.  It is 

likely that sytematic addition of 230Th and 234U through -recoil might not be a 

dominant open-system process in the Mondu raised reefs. In contrast, the isochron 

correction model [Scholz et al., 2004] shows good application in the correction of the 

coral ages. 
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 Table 5.3  230Th ages and model correction ages for Mondu raised corals and reefs 

Sample 234U/238U 230Th/238U 
230Th Age 

(ka) 
Initial d234U 

O-S Age 

(ka)^ 

Corrected 

age (ka)$ 

MI03-B-2a* 1.246  ± 0.002 1.468 ± 0.006         263.3 ± 42.9 83.5 

MI1a* 1.228  ± 0.002 1.480 ± 0.004     

MI3-03a-D-1 1.173  ± 0.001 0.958 ± 0.003 171.6 ± 1.3 280.8 ± 2.0 117.9 ± 3.9  

MI3c* 1.097  ± 0.001 0.474 ± 0.002 61.1 ± 0.3 115.0 ± 1.6 73.7 ± 0.8  

MI6-03-D-1* 1.111  ± 0.002 0.590 ± 0.002 81.3 ± 0.5 139.7 ± 2.0 84.1 ± 1.1  

MI6-03-D-2* 1.164  ± 0.001 0.955 ± 0.003 173.9 ± 1.6 268.2 ± 2.3 124.4 ± 3.8  

MI6d# 1.101    0.623   89.7 ± 0.0 130.0 ± 0.0 96.6 ± 0.0  

GC03-1b* 1.153  ± 0.002 0.849 ± 0.003 138.6 ± 1.0 226.7  ± 2.1 107.1 ± 2.6 85.9 

GC03-1b-3 1.170  ± 0.003 0.888 ± 0.004 146.7 ± 1.4 256.9 ± 3.6 103.7 ± 3.6  

GC03-D-3 1.158  ± 0.001 0.808 ± 0.004 125.4 ± 1.3 224.6 ± 1.8 95.3 ± 2.4  

GC03-D-4 1.144  ± 0.001 0.811 ± 0.003 129.6 ± 1.0 207.6 ± 1.3 105.5 ± 1.9  

GC03-D-5 1.135  ± 0.001 0.708 ± 0.003 103.8 ± 0.8 181.6 ± 1.1 90.4 ± 1.2  

GC3a* 1.137  ± 0.002 0.756 ± 0.002 115.5 ± 0.7 190.5 ± 2.0 98.3 ± 1.7  

GC5b* 1.277  ± 0.002 1.516 ± 0.005  226.7 ± 35.7  

GC6c# 1.161    1.330          > 85?

GC03-D-6 1.151  ± 0.001 0.578 ± 0.002 74.7 ± 0.4 186.3 ± 0.9 60.3 ± 1.1 < 85?

MIV2# 1.116    0.760   121.3 ± 0.0 162.9 ± 0.0 114.7 ± 0.5 110-114 

OA03-2b* 1.087  ± 0.001 0.684 ± 0.002 106.3 ± 0.7 116.9 ± 1.9 119.3 ± 1.2 101.1 

OA03-D-2 1.171  ± 0.001 1.099 ± 0.003 252.6 ± 2.9 349.4 ± 2.9 163.2 ± 6.1  

OA03-D-7 1.141  ± 0.001 0.957 ± 0.004 185.1 ± 2.1 237.8 ± 2.2 146.0 ± 3.3  

OA03-D-3 1.145  ± 0.001 0.916 ± 0.003 165.3 ± 1.5 232.0 ± 1.5 129.9 ± 2.8  

OA03-D-4 1.145  ± 0.001 0.927 ± 0.005 169.9 ± 2.3 234.2 ± 2.1 133.3 ± 3.1  

OA03-1c* 1.252  ± 0.001 1.106 ± 0.004 202.0 ± 1.8 446.4 ± 2.7 91.7 ± 7.1 ?

MII9b* 1.289  ± 0.002 1.635 ± 0.005             113-123 

MII2c# 1.223   1.344  209.2 ± 17.6  

MII2c-D* 1.233  ± 0.002 1.384 ± 0.004     217.8 ± 21.8  

MII03-D-1 1.186  ± 0.002 1.396 ± 0.004     

MII7a* 1.218  ± 0.002 1.692 ± 0.005          

MV03-A-2c-3 1.108  ± 0.002 0.805 ± 0.004 136.8 ± 1.5 158.9 ± 2.4 131.7 ± 1.9 133.6 

MVO3-A-2C-D-2* 1.110  ± 0.001 0.803 ± 0.002 135.7 ± 0.8 160.8 ± 1.9 129.8 ± 1.4  

MVO3-A-2C-D-3* 1.136  ± 0.002 0.854 ± 0.003 145.5 ± 1.1 204.6 ± 2.3 121.8 ± 2.3  

MVO3-A-2C-D-4* 1.104  ± 0.002 0.842 ± 0.002 151.3 ± 1.1 159.5 ± 2.5 145.7 ± 1.8  

MV03-A-2a-D-1* 1.107  ± 0.001 0.841 ± 0.003 149.9 ± 1.1 163.3 ± 1.9 142.7 ± 1.5  

MV03-A-2a-D-2* 1.109  ± 0.001 0.847 ± 0.003 151.3 ± 1.0 167.1 ± 1.7 142.5 ± 1.5  

MV03-A-2a-D-3* 1.119  ± 0.001 0.888 ± 0.003 163.7 ± 1.3 189.1 ± 2.1 145.3 ± 2.1  

MV03-A-2a-D-4* 1.116  ± 0.001 0.911 ± 0.003 175.0 ± 1.3 189.9 ± 1.9 155.9 ± 2.1  

MV03-A-2b-D-1* 1.123  ± 0.002 0.877 ± 0.003 157.8 ± 1.4 192.7 ± 2.5 138.2 ± 2.3  

MVO3-A-3-1a-D* 1.123  ± 0.002 1.550 ± 0.004         ?

MVO3-A-3-1b-D* 1.139  ± 0.001 1.317 ± 0.004         

MVO3-A-3-D-1* 1.131  ± 0.002 0.932 ± 0.003 178.0 ± 1.5 216.1 ± 2.5 147.9 ± 2.9  

MVO3-A-3-D-2* 1.152  ± 0.002 0.818 ± 0.002 129.7 ± 0.8 219.4 ± 2.4 101.3 ± 2.4  

MVO3-A-3-D-3* 1.144  ± 0.002 1.181 ± 0.003     254.0 ± 11.8  

MV03-B-2b-7 1.122  ± 0.001 0.680 ± 0.003 99.4 ± 0.8 161.1 ± 1.3 93.7 ± 1.0 83.5 

MV03-B-D-1_A 1.143  ± 0.002 1.045 ± 0.005 235.5 ± 4.0 278.6 ± 3.6 175.0 ± 5.1 175.0

MV03-B-D-1_B 1.142  ± 0.001 1.047 ± 0.003 238.7 ± 2.9 278.2 ± 2.7 177.9 ± 4.8  

MV03-B-D-2 1.118  ± 0.001 0.947 ± 0.006 191.7 ± 3.1 203.0 ± 2.4 166.2 ± 3.1  

MV03-B-D-3 1.207  ± 0.001 1.191 ± 0.006  157.3 ± 9.0  

MV03-B-D-5 1.174  ± 0.001 1.081 ± 0.003 236.2 ± 2.3 340.2 ± 2.3 152.9 ± 5.7  

MVII03-B-D-1 1.173  ± 0.001 0.868 ± 0.003 139.5 ± 0.9 256.1 ± 1.8 97.4 ± 3.1 83.5 

MVII03-B-D-2 1.104  ± 0.002 1.057 ± 0.004 290.2 ± 5.7 237.1 ± 4.1 240.8 ± 5.8 258.1

MVII03-B-D-3 1.122  ± 0.001 1.146 ± 0.002         

MVII03-D-4 1.188  ± 0.000 1.273 ± 0.002     230.1 ± 15.2  

MVI03-7a-2 1.427  ± 0.002 2.662 ± 0.012        
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Notes for Table 5.3: 

All the ICP-MS measurements were isotope dilution runs using a mixed 233U-229Th tracer, which had been calibrated 

against the Harwell Uraninite (HU-1) secular equilibrium standard. 

Decay constants are 9.1577 x 10-6 yr-1 for 230Th, 2.8263 x 10-6 yr-1 for 234U, and 1.55125 x 10-10 yr-1 for 238U (Cheng et al., 

2000). 

Analytical errors are 2 of the mean. 

# The four samples were measured by Dr Linda Ayliffe using the thermal ionisation mass spectrometer at the Laboratoire 

des Sciences du Climat et de l’Environnement, Gif-sur-Yvette Cedex, France. 

* Measurements were conducted at the Department of Geosciences, the National Taiwan University by Chuan-Chou 

Shen and Chih-Wei Chen, using MC-ICP-MS following chemical and instrumental protocols similar to Luo et al. [1997] 

and Stirling et al. [2001], while most of the other sub-samples were analyzed with similar protocols at Research School of 

Earth Sciences, the Australian National University (RSES, ANU). 

^“Open system”(O–S) ages and errors were calculated using a spreadsheet provided by W. Thompson [Thompson et 

al., 2003] with an assumed initial 234U value of 146.6‰ [Stirling et al., 1998; Robinson et al., 2004]. 

$ 
“corrected age” is achieved by combination of the isochron model correction and the stratigraphic analysis. The 

isochron age was obtained by linear regression of data on the 234U/238U - 230Th/238U plot for corals from the same reef or 

sub-samples from the same colony and its intersection with the seawater evolution curve corresponds to the true age of 

the reef or coral [Scholz et al., 2004]. an seawater 234U value of 146.6‰ was applied for the seawater evolution curve 

[Robinson et al., 2004]. There are corals from a reef excluded for isochron age correction on the base of further analysis 

as detailed in text. 

5.3.3  Isochron model correction ages 

Figure 5.2 displays a 234U/238U – 230Th/238U plot with all the data points for the Mondu 

fossil corals (one single massive Porites coral MV03-A-3 is excluded owing to its 

higher calcite content). 

Careful observations reveal that, with few exceptions, the corals in reefs Mondu I, Goat 

Site, Mondu V-B, and Mondu VII, respectively, corals from a single reef form a very 

good array (with r2 = 0.99, 0.80, 0.94, or 0.95, along the pink, red, blue, or green lines, 

Figure 5.2). The array of the corals within one reef means some common mechanism is 

involved in the diagenetic alteration of the U-series isotopes, and the isochron model 

[Scholz et al., 2004] assumes that the intersection point between the array line and the 

seawater evolution curve corresponds to the true age of a coral within the reef. For the 

four reefs, the achieved isochron model ages are 83.5 ka, 85.9 ka, 175.0 ka, and 258.1 

ka, respectively.  
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The U-series age correction of coral MV03-A-2 has been discussed in detail in the 

previous chapter since it provides a unique opportunity to explore U-Th open-system 

behaviours. Our study shows it involved two distinct processes of U-Th diagenesis and 

that correction ages could be achieved separately from both processes. Both corrections 

give an almost identical age of 133.6 ka, suggesting that reef MV-A developed during 

Termination II. 
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Figure 5.2  234U/238U – 230Th/238U plot of the Mondu raised fossil coral reefs. The black curve with scales is the 

seawater evolution curve with a modern 234U value of 146.6‰ and the numbers along it represent the corresponding 

ages. The grey curves envelop a ±10‰ range for age reliability assessment. The coloured dots and crosses represent 

reef corals and the coloured thin lines show linear regression of data within one reef excluding one or two corals 

based on stratigraphic analysis (see text in Section 5.4 for details). Note that there seems to be two groups of the 

regression lines which are parallel to one another within one group: the group with older ages has larger slopes than 

the younger ones and the two groups seemed to separate around the last interglacial period or Termination II (around 

130-140 ka) with the Termination II coral MV03-A-2c (134 ka) have both regression lines (details refer to Chapter 7 

of this thesis). The array of the corals within one reef means some common mechanism involved in the diagenetic 

alteration of the U-series isotopes, and the Isochron Model [Scholz et al., 2004] assumes that the intersection point 

between the array line and the seawater evolution curve corresponds to the true age of the corals within the reef. The 

calculated model correction ages are listed in Tables 5.3 and 5.4. 
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Even though as a whole the 6 corals in Oasis reef do not array in the 234U/238U – 

230Th/238U plot, an isochron could still be achieved based on stratigraphic analysis and 

burial history (cyan line in Figure 5.2 and detailed description in Section 5.4). Also, 

since all the measured 5 corals from Mondu II reef are severely altered and located far 

away from the seawater evolution curve in the plot, no isochron correction age within 

reasonable error could be achieved for Mondu II reef, but the style of dispersing of the 

data points seems to constrain its age to 100-150 ka.  

Sections 5.5 shows how the isochron model correction ages are consistent with 

stratigraphic relationships and physiographic features of the reefs. Section 5.4 

summarizes the stratigraphic relationships and physiographic features of the Mondu 

raised reefs on the basis of topographic surveys and field observation.  

5.4   STRATIGRAPHY OF THE MONDU RAISED REEFS 

5.4.1  Composite cross-section of the major reefs 

A schematic cross-section of the Mondu reef terraces has been synthesized in Figure 5.3, 

which captures the main stratigraphic relationships and elevations of most of the studied 

reefs.  

The topographic features of the transect are those along the AB line through the central 

sector of the study area (red line “AB” in Figure 5.1).  The elevations and stratigraphic 

relationships of the River Site, Mondu I, Mondu II, Mondu V-A, and Mondu VI reefs 

are what were observed along the AB line. Other reefs such as Mutiara Site, Bridge Site, 

Goat Site, Oasis Site, Mondu III (including Mondu I West), and Mondu VII, are also 

illustrated in this section on the basis of stratigraphic analysis and age determination 

(see Sections 5.4 and 5.5). The stratigraphic relationships involving Mondu V-B and 

Mondu IV reefs could not be included in this single cross-section and, instead, will be 

depicted in the text. 
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Figure 5.3  Schematic cross-section of the Mondu reef terraces. Thick black curve represents the topographic 

features across the central area of this study as shown by the red AB line in Figure 5.1. The reefs and associated 

erosion surfaces have been indicated by symbols and fine lines. Note: the vertical scale is obviously enlarged relative 

to the horizontal scale. 

5.4.2  Features of the Mondu raised reefs 

Holocene reefs 

Extensive Holocene coral reef platforms have been developed along the coast. Reef 

platforms about 50 to 80 meters wide were exposed at low tide at both the Mutiara and 

River Site (Figure 5.1). Figure 5.4 shows the Holocene reef platforms. 

Goat Site reef 

Goat Site is about 250 to 500 m inland from the beach. All the corals are on the foot or 

in the middle of a steep cliff (Figure 5.5). This cliff is topped by an extensive platform 

with a typical carbonate surface that is very hard and flat but not smooth. According to 

our survey, the platform is about 12 to 21 m above the mean sea level. 
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Oasis Site reef 

Oasis Site is 600m southwest of Goat Site, about 1 km from the beach line. The reef is 

located where the extensive platform above Goat Site ends and another higher terrace 

begins to rise steeply uphill which is about 21 m above sea level. The coral heads are 

distributed from just under the 21 m surface to a base 9 m above sea level (12 m in 

thickness). The preservation of the reef seems different from Goat Site corals; most of 

them are badly weathered. But we still retrieved a good core from coral OA03-1. 

Mondu I reef 

Mondu I reef is about 1.5 km inland from the beach line and is the most extensively 

exposed and developed of all the raised reefs we studied (Figure 5.6). The reef starts at 

27 m and ends in 40 m above sea level (13m in thickness).  

Many of the coral heads are still in good condition. Coral MI4 is particularly remarkable 

in that it has the original growth surface (as shown in the inset of Figure 5.6). But most 

of the corals show evidence of calcification. 

Mondu I West and Mondu III reefs  

Mondu I West reef is located on the west side of Mondu I reef; between them is a dry 

creek. The elevation of the reef is 18 to 27 m above sea level. Most of the corals are 

weathered.  

Mondu III reef is located about 600m west of Mondu I West reef. It has almost the same 

elevation as Mondu I West reef and most of its corals are weathered. 

Based on the stratigraphy, it is possible that the Mondu I West and Mondu III reefs 

developed during an old unknown stage. We believe this because there is a distinct 

erosion surface on the top of Mondu I West reef. It appears that Mondu I reef may have 

developed on the erosion surface.  
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Figure 5.4  Holocene reefs in River Site (W. of Mondu River) and Mutiara Site (E. of Mondu River). 

 

Figure 5.5  The Goat Site reef showing the cliff and fossil Porites coral GC1 
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Figure 5.6  The Mondu I reef and well preserved coral MI4. 

 

Figure 5.7  Panorama of the Mondu II reef (A) and close-ups of its sediment and coral head (B, C, and D). 
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Mondu II and VII reefs 

Mondu II reef is located around a hill 65 m above sea level which we named “+65m 

Hill”. This hill is about 2 km inland from the sea and 700 m south of Mondu I reef. 

Corals are abundant in the west and east side of the hill (Figs. 5.7 and 5.9). Their 

elevations are between 50 to 60 m above sea level (10 m in thickness). Figures 5.5 and 

5.7 show clearly that this reef developed on an base surface (indicated by yellow dashed 

lines). Mangrove sediments (~ 4 m thick) are preserved between the reef and the hill top, 

as shown in Figure 5.7A and B. Many carbonate mangrove casts of stems and roots 

have been found among ivory white fine clastic sediment (Fig. 5.7C). Some of the 

corals are well preserved (as MII5 coral shown in Figure 5.7D), but many of them are 

weathered. 

Mondu VII reef is further inland and 200 m southwest of Mondu II reef. Between them 

is a broad dry creek. They have the same elevation. There is a hard erosion surface on 

the top of the Mondu VII reef, and above that erosion surface, there seem to be other 

ancient reef or sediment but no coral samples were retrieved. 

In Figure 5.1, we can see that there are 3 hills as high points around Mondu I and 

Mondu II reefs. All of them are top-flat around 60 m above sea level. Between the 

Mondu II reef and the top of the +65 m Hill, fine mangrove sediments with several 

meters in thickness have been found and many carbonate mangrove stem and root casts 

are among them. As a matter of fact, it is evident in Figure 5.1 that the 3 top-flat hills 

are later-incised parts of an extensively developed marine terrace (60 ~ 70 m above the 

sea level) around the Mondu area. This terrace is one of the three main terraces below 

80 m above sea level in this area with an extension of 300 to 800 m (the other two 

extensively developed reef terraces are 0–5 m and 14–20 m above sea level, respectively, 

refer to Figures 5.1 and 5.3). These terraces all indicate lengthy periods of sea level 

stability producing terarces up to ~300 m wide. If an uplift rate of the nearby Cape 

Laudi is applied (0.49m/kyr) [Pirazzoli et al., 1991], the development of this terrace 

might occur during MIS 5e, i.e., 128 to 119 ka. 



Chapter 5: Mondu raised coral reefs of Sumba, Indonesia 

98                                  The Australian National University 

Mondu V-A, V-B, and Mondu IV reefs 

Mondu V-A and B reefs are exposed on each side of a deep creek located to the west of 

Mondu I +60m Hill (Figure 5.1). On the east side of the creek (the Mondu V-A reef) 

four Porites are very prominent and almost at the same elevation (39 m above sea level, 

Figure 5.8A). About 5 m above the corals there is an erosion surface which has an 

elevation of 44 m above sea level. All of these corals are in good condition. Dating of 

one of the MV-A coral (MV03-A-2 in Figure 5.8B) has been performed (see Chapter 4) 

by multiple U-series isotope measurements in skeletal sub-samples within this colony to 

explore the diagenetic behaviour of U-series isotopes in fossil corals from the Mondu 

raised reefs. A high-quality core and paleoclimate record has been reconstructed using 

this coral and is reported in Chapter 8.  

On the west side of the creek (the Mondu V-B Site) many corals have been found and 

the elevations are between 37 to 42 m. On the top of Mondu V-B corals there is an 

erosion surface and the elevation is 48 to 51 m above sea level (Fig. 5.8C, yellow line). 

Coral MV03-B-2 has particularly high-quality material. 

Figure 5.8C also shows the Mondu IV reef. It is located about 80 m west of Mondu V-B 

site. Most of the corals are 40 to 45 m above sea level, a little bit higher than the Mondu 

V-A and B corals. The Mondu IV reef seems to develop on edge part of the top of reef 

Mondu V-B, and in further inland, the reef MIV ends before the higher erosion surface 

(magenta line in Figure 5.8C). 

Mondu VI reef 

Figure 5.9 shows Mondu VI reef which is much lower than Mondu II reef. Around the 

Mondu II + 65 m Hill, there are 3 sites (MVI-A, B, C in Table 5.1) where reefs exposed. 

They have the same elevation, the same base and top, and under the same erosion 

surface. We think they are one single reef (named Mondu VI reef) buried beneath the 

Mondu II and V-A reefs. 
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Figure 5.8  Panorama of Mondu V-A, V-B, and IV reefs with important coral heads indicated. 

In general, the corals are badly weathered. Actually, they are the worst weathered 

material among all the studied reefs. Even though the material quality of the reef is poor 

as a whole, we collected some cores in the west side of the creek. The corals are very 

white and light-weight, and show no obvious evidence of calcification but might be a 

result of material dissolving. 
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Figure 5.9  Mondu VI reef and the erosion surfaces. Magenta dashed lines illustrate the erosion surface on the 

top of Mondu VI reef, yellow dashed line indicates the reef base of Mondu II reef, and the white one shows the flat 

top of the 65m hill. 

Apart from the conspicuous weathered quality, another major feature of this reef is the 

remarkable overlying erosion surface. Figure 5.9A shows the surface on the east site of 

the +65 m Hill. It is just on the top of some of the corals, and is very solid and smooth. 

Figure 5.9D also shows the surface (line 1 in magenta) on the west side of the +65 m 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                          101 

Hill. According to our survey, the elevation of the erosion surface beneath the Mondu II 

reef is about 50 m above sea level in front of the 65 m hill and the hard surface on the 

top of Mondu VI reef is 44m. This very hard and smooth surface also indicates very 

long time of exposure and erosion. Considering the sea level change and the local uplift 

rate, the possible age when the reef developed might be 174 ka when there was a 

highstand in sea level change [Thompson and Goldstein, 2005]. After that period, the 

reef had undergone exposure and erosion for as long as 40 ka.  

5.5  AGE DETERMINATION AND REEF RAISING 

5.5.1  Isochron slope and history of reef burial/exposure 

The isochron correction model [Scholz et al., 2004] suggested an approach independent 

of the systematic of -recoil addition, and assumed a linear relationship between 230Th 

and 234U. It showed that the true age of a reef or coral can be calculated using the 

intersection of the arrayed line (“isochron”) formed by the data points of the reef corals 

or subsamples of a coral with the seawater evolution curve in the 234U/238U – 230Th/238U 

plot. This model combines uranium uptake and loss, with the latter being proportional to 

the amount of uptake.  

As shown in Chapter 4 of this thesis, multiple sub-sample measurements of U-series 

isotopic composition in a Mondu raised coral MV03-A-2 provide a unique opportunity 

to examine this kind of U-Th uptake and loss since it evidently experienced two 

recognisable stages of post-depositional alteration. The earlier process involved addition 

of allochthonous dissolved 234U and 238U together with addition of detrital 

non-radiogenic 230Th, while the later process was clearly connected to loss of 234U and 

238U occurring along loss of detrital-bound 230Th. Locally radiogenic 230Th appears to 

have played an important role in maintaining a constant 234U/230Th when percolating 

groundwater with allochthonous U and a high 234U value entered the coral at the earlier 

stage. On the other hand, detritus-bound 230Th was critical to maintain a fixed 234U/230Th 
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when percolating meteoric water dissolved coral skeletal U at the later-stage. The results 

suggest that a mechanism like diffusion or osmosis controlled the addition or loss of 

dissolved U and detrital Th in the coral by way of a solute concentration gradient. This 

result shows how the U and Th were uptaken or lost, while the ratio of 234U/230Th 

remained roughly constant, as observed by Scholz et al. [2004]. 

The result for the Sumba coral MV03-A-2 supports the calculation of the correction age 

by intercepting the array line (“addition line” [Gallup et al., 1994] or loss line) with the 

seawater evolution curve. Figure 5.2 shows that there seems to be two groups of 

regression lines which are parallel to one another within each group.  The group with 

older ages has larger slopes than the younger ones and they seem to separate around the 

last interglacial period or Termination II, while the Termination coral MV03-A-2c has 

both regression lines (refer to Chapter 4 for details). The detailed study of coral 

MV03-A-2c demonstrates that the later process (shown by the bold black dashed array 

line in Figure 5.2) mainly involved U/Th loss from the coral after it was exposed 

directly to meteoric water a low U content, while the earlier process (represented by the 

bold grey solid line in Figure 5.2) mainly happened when the coral was buried. The 

process mainly involved U/Th addition from the percolating groundwater with higher 

234U value derived from the surrounding reefs. 

Therefore, I think the two distinct array lines could be connected to different histories of 

exposure or burial between reefs: the isochrons with bigger slopes should be connected 

to reefs which experienced long-term burial, while the isochrons with smaller slopes 

should be connected to reefs with long-time exposure and no history of burial. This 

speculation seems to be justified by the stratigraphic relationships of the Mondu reefs.  

Mondu I corals form an array line perfectly parallel to the meteoric water-involved 

process of the Termination II coral (Figure 5.2), and stratigraphic observation has 

demonstrated that Mondu I reef has never been buried and was probably exposed to 

meteoric water for a long time (Figures 5.6 and 5.3). In contrast, the Mondu V-B and 

Mondu VII corals form parallel array lines with that of a process involving U addition 
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from the surrounding reefs of the Termination II coral, and our field surveys showed 

that they are now underlying other reefs (Figures 5.8 and 5.3). The slightly smaller 

slopes of Mondu V-B and Mondu VII reefs relative to the Mondu V-A coral’s earlier 

alteration process might even imply a longer history of exposure than that of the Mondu 

V-A reef. This finding would be helpful in corroborating the ages of the Mondu raised 

coral reefs. 

5.5.2  Sea level curve and uplift rates of Mondu reefs 
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Figure 5.10  Comparison between modern elevation of the Mondu raised reefs (when the result of this 

study on their ages were used) and the calculated imaginary elevation of the past sea-level marks (grey curve, if a 

uplift rate of 0.49 m/kyr [Pirazzoli et al., 1991] is applied). The coloured solid dots represent Mondu raised coral 

reefs with the surveyed elevation and the age results of this study. The upright error bars display the range of the 

elevation of the corals within one reef and the horizon error bars indicate the possible range of age of one reef. The 

red and black circles show the altitudes and ages of modern and Holocene corals in Mondu area. The black curve 

marks the past-time sea-level since 270 ka (the 0-250 ka sea-level data are from Thompson and Goldstein [2005], 

while 250-270 ka sea-level data are base on Lea et al. [2002]). The dashed grey line denotes the modern sea-level. 

The main oxygen isotope stages MIS-8 to MIS-1, including the substages of MIS-5, are identified on the top. 
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Since coral reefs are built up near the sea level (usually -6 to 0 m below the mean sea 

level), the ups and downs of sea level in the past time would be a key clue for 

establishment of the soundness of age determination of raised coral reefs. Figure 5.10 

shows the recent results of researches on the past-time sea-level curve since 270 ka 

(black curve), with which we would conveniently find out the history of exposure and 

burial of reefs. Given an uplift rate, we would easily validate the age of a raised reef if 

its elevation is known.  

Also illustrated in Figure 5.10 is a comparison between the present-time elevations of 

the Mondu reefs (colour dots or circles with error bars for both elevations and ages) and 

the elevations of the imaginary marks of the past-time sea-level (grey curve) if a uplift 

rate of 0.49 m/kyr [Pirazzoli et al., 1991] was applied. The final ages which are 

described further in details in next section are applied here to more clearly illustrate the 

stratigraphic relationships and histories of burial/exposure of the Mondu reefs, and to  

help arguing on the soundness of age determination of this study. 

It shows very good consistency between the elevations of the raised reefs and the 

past-time sea level curve if an uplift rate of 0.49 m/kyr was applied, corroborating the 

age determination of the Mondu raised reefs in this study. It supports a constant uplift 

rate of 0.49 m/kyr of the Mondu reefs since 258 ka, consistent with the findings of 

Pirazzoli et al. in the nearby Cape Laudi of 10 km away [Pirazzoli et al., 1991]. Our 

results seem also to show a slightly lower rate in 5c and higher rate in 5a/5b and both 

seem to offset with each other very well and seem to have not affected the long-term 

rate of uplift. The fluctuation of uplift rate has also be reported by Bard et al. for the 

lower terraces in Cape Laudi [Bard et al., 1996].  

5.5.3  Analysis of ages of the reefs 

Mondu I reef 

One of the corals in reef Mondu I produced the only age value among all the measured 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                          105 

samples, which is thought to be reliable with an initial 234U value of 139.7‰ (Table 

5.3, from a Porites coral MI6). Even though it might be slightly younger than its true 

age (beneath the seawater evolution curve), both the measured age of 84.1 ka of this 

coral and the corrected isochron age of 83.5 ka of Mondu I reef correspond to the 

highstand of MIS 5a. Notwithstanding the surveyed elevation of this reef is higher than 

the elevation of the coeval imaginary marks with an uplift rate of 0.49 m/kyr, I think the 

Isochron correction age of 83.5 ka reflects the true age of the reef Mondu I and it built 

up during MIS 5a. The main reasons are as followings: 

 The initial 234U value of one of the corals is within the range of the reliable; 

 The correlation coefficient r2 of the array line is strikingly 0.99 for all the 6 ICP-MS 

data points on the 234U/238U – 230Th/238U plot; the only exception is measured by 

TIMS, and the sample is from the same coral deriving a reliable age of 84.1 ka, 

therefore it does not represent a different age but a possible discrepancy of 

diagenesis or measurement error between different instrumental methods or 

laboratory differential; 

 Both of field observation (Figure 5.6) and the gentle slope of the MI reef array line 

which is parallel to the late meteoric water involved process for the Termination II 

coral (Figure 5.2, the bold dashed pink line and the parallel bold dashed black line) 

demonstrate a non-buried history of this coral reef, which is consistent with what 

the sea level curve has suggested (Figure 5.10). 

 This age determination is consistent with the stratigraphic relationships: it is very 

possible that this reef is developed on the top of Mondu III reef, and even Oasis 

reef which built up during 5c suggested by the analysis of stratigraphy. 

The possible reasons for the higher elevation of this reef are either a higher sea level 

during that time or a higher rate of uplift during that time which is likely that it does not 

affect the average uplift rate and the higher rate of uplift might be offset by lower uplift 
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rate immediately before or after this period. The lower elevation of reef Oasis might 

imply a lower rate of uplift during 5c. The fluctuation of the uplift rate has also be 

reported by Bard et al. [Bard et al., 1996] for the Cape Laudi. 

Mondu V-B and Mondu VI reefs 

Even though no age could be directly achieved for Mondu VI reef by the U-series 

method and the model correction, the stratigraphic analysis basically supports that the 

age of the reef is an early sea-level highstand during MIS 6 around 174 ka, which means 

it should be the same reef as Mondu V-B in the further south. 

5 of the 6 Mondu V-B corals produce an Isochron correction age of 175 ka with a 

correlation coefficient r2 of 0.94 (Figure 5.2), which points to a sea-level highstand 

during early MIS 6 (Figure 5.10). It is worth to mention that even all the Open-System 

model correction ages of the 5 corals fall in the same sea-level highstand (Table 5.3). 

Figure 5.10 also shows the elevation of this raised reef is consilient with the sea-level 

curve with a locally constant uplift rate of 0.49 m/kyr. Furthermore, the isochron slope 

of coral U-Th data agrees with that of the earlier diagenetic process involving 

groundwater with high U and 234U sourced from the surrounding reefs, suggestive of 

history of burial by other younger reef(s). Stratigraphic analysis has supported that this 

Mondu V-B reef has been at least partly covered by Mondu IV reef in the north (Figure 

5.8) and totally covered by Mondu II reef in the south (as Mondu VI reef there, Figures 

5.9 and 5.3). It is very possible that this reef is covered by Mondu V-A reef somewhere 

between the 60 m hill and the 65m hill. The very hard erosion surface above Mondu VI 

(Figure 5.9B and C) and its weathered material are also consistent with a very long time 

of exposure which is as shown as the long-term of sea-level lowstand during the glacial 

of MIS 6 (Figure 5.10). Therefore, all those evidences indicate that the Isochron 

correction age of 175 ka is reasonable for Mondu V-B and VI reefs. 

A long Porites core of MV03-B-2b from reef Mondu V-B gives a conventional U-series 

age of 99 ka (Table 5.3). Since it has a marginal 234U value of 161.1‰, its true age 
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might be younger based on the observation of Gallup et al. [1994] and the possible age 

should be less than 95 ka which corresponds to late 5c or 5a. Given its elevation of 37.5 

m and it grew on the seaward edge of reef Mondu V-B, its most possible age should be 

MIS 5a, the same as reef Mondu I since the sea-level in late 5c (< 95 ka) was too low to 

reach that point according the sea-level curve [Thompson and Goldstein, 2005] when a 

higher rate of uplift is excluded during 5c which is confirmed by the elevation of reef 

Oasis (see below). Figure 5.2 also shows that this coral is arrayed with the other corals 

of Mondu I reef. So I date this long core for now as 83.5 ka (Table 5.3).  

Mondu VII reef 

Even though the Mondu VII reef’s Isochron correction age was given by only 3 corals, 

its model age of 258.1 ka seems to be well consistent with our analysis of stratigraphic 

relationship and history of burial. It is located in the most south of the study area and 

should be a very old reef given its low altitude (Figure 5.3). The corrected age and 

elevation is accordant with the sea level curve with the local uplift rate of 0.49 m/kyr, 

indicative of a highstand during late MIS 8 (Figure 5.10). The sea level curve also 

demonstrates that this reef would have been exposed for erosion after it built up during 

the end of the glacial MIS 8, which explains the erosion surface on the top of the reef. 

Field observation indicated that this reef is buried by unknown reef(s) or sediments, 

which is in agreement with the fact that the reef should be burial by reefs or sediments 

after the sea level raised again and maintained at a much higher level during the whole 

period of interglacial of MIS 7 according to the sea-level curve (Figure 5.10). The steep 

slope of isochron for this reef (Figure 5.2) also reflects a history of burial of this reef or 

by some younger reefs or sediments.  

Mondu V-A reef 

A Mondu V-A Porites coral gave a conventional 230Th age of 136.8 ka for the most 

pristine sub-sample with a marginal initial 234U value of 158.9‰, which implies that 

the true age of the coral is slightly younger. According to the observation of Gallup et al. 
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[1994], the true age of coral MV03-A-2 might be between 133 ka and 134 ka (see pp. 

56-57 in Chapter 4 for details). Further analysis of multiple sub-sample measurements 

demonstrated that the coral experienced two distinct processes of U-series diagenetic 

alteration and two models derived from each process gave essentially the same model 

correction age of 133.6 ka (see Chapter 4 for dating of this coral). 

All the achieved U-series ages, including the conventional 230Th age, the experiential 

age and the correction ages of different models, confirmed that this coral was growing 

during the termination of the penultimate glacial period (Termination II, 140 ka ~ 128 

ka) [Martinson et al., 1987; Muhs, 2002; Brauer et al., 2007]. During Termination II, 

sea level was believed to rise rapidly between the glacial ~ -120 m, [Lea et al., 2002; 

Cutler et al., 2003; Risebrobakken et al., 2006] and interglacial ~ +5 m [Stirling et al., 

1995] positions. However, recent research suggests that Termination II did not consist of 

a monotonic sea-level rise as occurred during Termination I [Fairbanks, 1989; Bard et 

al., 1990] but instead included an interlude of significant sea-level fall [Esat et al., 1999; 

Gallup et al., 2002; Antonioli et al., 2004; Siddall et al., 2006; Andrews et al., 2007], as 

shown by the Thompson and Goldstein’s sea level curve [2005] in Figure 5.10. The sea 

level had reached an early highstand lasting several millennia around 134 ka, followed 

by a sharp drop in sea level and still-stand of several millennia around 131 ka, before 

the final sea-level rise to the MIS 5e interglacial starting at 128 ka. 

Our stratigraphic investigation strongly supports those achieved U-series ages of the 

Mondu V-A reef and the ups and downs of sea-level during the Termination II. The 

loose erosion surface 5 m above on the reef (Figure 5.8A) demonstrates only a short 

period of exposure after its burial, while a sporadic distribution of corals in this reef 

might imply a short period of stable sea level, which are both consistent with a short 

highstand during Termination II following a dramatic sea-level drop. The observation 

that Mondu II reef developed on the erosion surface of the Mondu V-A further confirms 

the age of this TII reef. The two slopes of the U-Th data in Figure 5.2 for the single 

colony exactly reflect the history of the coral which was buried firstly by younger reef 
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(the last interglacial maximum reef) and then fully exposed to meteoric water owing to a 

large crack cutting the coral (see details in Chapter 4). 

Goat Site Reef 

Seven of the Goat Site reef corals form an array which gives out an isochron model age 

of 85.9 ka. The GC 6c was excluded because of the same reason as the MI6D that it is 

also a TIMS result of measurement, while the GC13-D-6 give a strange data point and 

the reason might be its complicated diagenesis. 

The 85.9 ka of age corresponds to MIS 5b when the sea level was much lower than 

today, consistent with the low elevation of the Goat Site reef if an uplift rate slightly 

higher than a local long-term rate of 0.49 m/kyr is applied (Figure 5.10). But this higher 

rate seems still not enough to make the MIS 5b reef covered by a MIS 5a reef which is 

the only reef possibly able to cover the MIS 5b reef, as shown by the sea level curve, 

(Figure 5.10) since the sea level gap between them is up to more than 30 m. Instead, our 

topographic survey demonstrated that the MIS 5a reef of Mondu I developed much 

higher (20 m higher) in further south on top of other reef(s) (Figures 5.1 and 5.3). Field 

observation found that all of the GC corals seem to cover the foot of an ancient marine 

notch (the cliff in Figure 5.5). This demonstrates that, even though the reef is exposed to 

meteoric water since it formed, it has also been very closely connected with the 

percolating groundwater from the cliff. The isochron slope of this reef (red line in 

Figure 5.2) seems to exactly reflect this kind of situation: it is between the two main 

groups and a little more close to the “meteoric water” array lines. Therefore, all the 

results of analysis on stratigraphic relationships, sea-level’s up-and-down, local uplift 

rate, and the history of burial and exposure support an age of MIS 5b for the Goat Site 

reef. 

Mondu IV reef 

Only one age has been obtained from the U-Th measurement. Fortunately, it has a 
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marginal initial 234U value of 162.9‰ which means the true age of this reef is only 

slightly younger than its conventional U-series age of 121.3 ka. And the range of its 

possible age could be achieved owe to the slightly changed initial 234U since we can 

constrain the range of age by applying the two slope values of the two group array lines. 

If this reef did not buried and the corals in the reef would form an array parallel the 

array line like the Mondu V-A coral later evolution line or the one like the Mondu I reef, 

both give out a latest age of this reef as 110 ka, or if this reef was buried for long time, 

the array line would parallel the array line of the Mondu V-A earlier-stage process 

evolution line and it gives out a oldest age of 118 ka. Therefore, the age of Mondu IV 

reef would be within the range of 110-118 ka. Since field observation showed that the 

reef is on the top of the Mondu V-B and no reef covers it, the age range of this coral 

should be the late half: 110-114 ka. This age and elevation are also well consistent with 

the published sea level curve when an uplift rate of 0.49 m/kyr is applied (Figure 5.10). 

Oasis reef 

No upper covering reef was found and all the corals in this reef are directly exposed at 

Oasis site. But at Mondu I site, Mondu I reef developed on the top of a cliff which is 

based on a 20 m platform there, suggest that the Oasis reef is older than Mondu I reef. 

The sea level curve suggests that the possible age of the reef is 5c. Even though the 

U-series measurement gives a scattering data distribution, the array line of the Oasis 

reef should follow the slope of the Mondu I array line since this reef is not covered. 

Three of the corals from the Oasis reef form an array with a similar slope as Mondu I 

corals, and it gives an age of 101.1 ka. 

Mondu III and Mondu I West reefs 

Stratigraphic analysis indicates that Mondu III and Mondu I West should be coeval coral 

reefs and the Mondu I reef directly covers them, suggestive of an older age than the 

Mondu I (MIS 5a) reef for these reefs. And, the cliff (18 ~ 26 m) between Oasis 

platform (erosion surface, 21 m) and the Mondu I reef (27 ~ 40 m) should be the Mondu 
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III and Mondu I west reef. Therefore, the possible age for them is 5c, which is 103 ~ 

108 ka. 

Mondu II reef 

The Mondu II reef and the extensive terrace platform at 60 ~ 65 m above the sea level 

represent an obvious feature of the Mondu area topography. The reef has never been 

covered by any other reefs. Based on the present-time elevation of imaginary past-time 

sea-level mark curve with a uplift rate of 0.49 m/kyr (Figure 5.10), the only possible age 

for this reef is 113 ~ 123 ka, corresponding to MIS 5e. Since all the corals of this reef 

give highly raised 234U/238U and 230Th/238U ratios (Figure 5.2), and only 2 or 3 of them 

form array lines, it is difficult to achieve a precise isochron correction age. Even though 

3 of them give an isochron age of 133 ka, it is not possible since the elevation of the 

coral is too high for this age, and it developed on a loose erosion surface of Mondu V-A 

reef and Mondu VI reef (Figures 5.2), MIS 5e is the most possible age for this reef. 

Table 5.4 summarizes the results of this study on the elevation and age for the Mondu 

raised coral reefs. 

Table 5.4 

Summary of reef elevations, ages, and Marine Isotope Stages (MIS) they belong to. 

Reefs 
Elevation 

above sea level (m) 

Thickness 

(m) 

Average 

Elevation (m) 

Age 

(ka) 
MIS 

Holocene  -2~2   1 ~ 6 1 

Mondu I 27~40 13 32 83.5 5a 

Goat Site 7~8   85.9 5b 

Mondu III 19-26 7 22 103 ~ 108 5c 

Mondu I west 18-26 8 22 103 ~ 108 5c 

Oasis 8~20 12 14 101.1 Late 5c 

Mondu IV 37~45 8 41 110 ~ 114 5d 

Mondu II 50~60 10 55 113 ~ 123 5e 

Mondu V-A 39 0 39 133.6 TII 

Mondu V-B 37~42 5 40 175  Early 6 

Mondu VI 34~44 10 39 162 ~ 175 Early 6 

Mondu VII 54   258.1  Late 8 
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5.6  CONCLUSIONS 

A wealth of fossil Porites coral cores have been drilled from the Mondu raised coral 

reefs in Sumba, Indonesia. To understand the reef environments of the corals, and 

establish guidelines for further exploration of the long, high-quality cores, the ages of 

these corals have been determined by combining stratigraphic analysis and U-series age 

model corrections. The ages were cross-checked using detailed topographic surveys and 

field observations, which provide new insights into the distribution, elevation, and 

stratigraphic relationships of the raised reefs. Fifty-four coral samples from the raised 

reefs have been measured for U-series isotopic composition, but almost all the results 

did not give reliable conventional 230Th ages. The open-system model [Thompson et al., 

2003] was first applied, but did not produce consistent ages, indicating that the Mondu 

raised corals did not experience diagenetic processes involving the mechanism of 

coupled addition of 234Th and 230Th through -recoil. However, the isochron model 

[Scholz et al., 2004] could be applied to the Mondu raised reefs and the model ages are 

proven to be consistent with the stratigraphic relationships and features of the reefs.  

The 234U/238U – 230Th/238U plot for the corals displays two distinct groups composed of 

parallel arrays of lines, with only a couple data points excepted. The array lines 

associated with the older corals have much larger slopes than the array lines associated 

with the younger corals. The stratigraphic analysis demonstrates that the slopes of the 

array lines reflect the burial/exposure history of the reefs: the reefs with smaller 

isochron slopes have experienced no history of burial and the reefs with bigger slopes 

have been buried by younger reef(s). This finding has served very well to help 

determine the ages of reefs whose ages could not be achieved by the Isochron correction 

model along. 

The results support a constant uplift rate of 0.49 m/kyr for the Mondu raised reefs since 

~260 ka, although the rate may be higher during MIS 5a/5b and lower during 5c. This 
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study demonstrates that some very high-quality Porites cores have been retrieved for 

high-resolution paleoclimate records (such as that from the early highstand during 

Termination II). Other promising time-windows for paleoclimate records from the 

Mondu reefs might include the interstadials and stadials of MIS 5, highstands in glacial 

MIS 6, and even a late highstand during glacial MIS 8. 
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CHAPTER 6 

CLIMATE AND OCEANOGRAPHY  

OF THE INDO-PACIFIC WARM POOL RECORDED BY 

A MODERN PORITES CORAL FROM SUMBA, INDONESIA 
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ABSTRACT 

This study demonstrates that modern corals from Sumba are excellent recorders of 

climate and oceanography in the Indo-Pacific Warm Pool. High-resolution (fortnightly) 

time series, stacked annual climatology, and seasonal means have been characterised for 

modern coral 18O and 13C. Detailed correlation and spectral analysis of these features 

with local instrumental records and main climate system indexes have been conducted, 

and the results demonstrate that the ENSO, Asian-Australian monsoon, and even remote 

equatorial Indian Ocean forcing all have a strong influence on the local climate and 

oceanography. The high-resolution coral 18O record from Sumba shed light on the key 

climate signals to improve our understanding the climate and oceanography in this area. 

The Sumba coral 18O record shows the dominant control of ENSO in austral winter 

whereby the interannual variability of the winter 18O serves as a good index for ENSO 

events. In austral summer and autumn (November through May), the coral 18O is 

overwhelmingly controlled by the tropical Indian Ocean winds and the monsoon. 

The high-resolution Sumba modern Porites coral 18O provides evidence for the routine 

penetration of the South Java Current (SJC) in austral summer and remote forced 

equatorial Indian Ocean Kelvin wave in autumn into the Savu Sea, which results in 

distinct freshening of the surface ocean during the austral autumn. By sensitively 

recording variability of sea surface temperature and salinity in this important exit of the 

Indonesian Throughflow (ITF), the Sumba coral 18O revealed active oceanic current 

activity in Sumba Strait. In austral winter, westward currents generally flow in the 

Sumba Strait and the ITF brings Pacific source-water with moderate salinity. In summer, 

the more saline SJC enters the Savu Sea from the west until around March. After March, 

two causes gradually lower the seawater salinity: the gradual weakening of the eastward 

SJC owing to the weakening of northwest monsoon winds, and the arrival of a remotely 

forced Kelvin wave with very warm and fresh water during April-July. Input of Indian 

Ocean water into the Savu Sea by the summer SJC and autumn Kelvin wave could have 
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significantly influenced the transport of the Indonesian Throughflow.  

Detailed correlations between annual skeletal density banding and the high-resolution 

coral 13C record show that the low skeletal density band coincides with peak summer 

monsoonal rainfall and maximum depletion in skeletal 13C. This correlation was 

attributed to the large input of terrigenous nutrients linked to peak summer monsoonal 

rainfall. This relationship could be applied to explore local monsoon variability in an 

economical and more efficient way by measuring the coral density. 
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6.1  INTRODUCTION 

The Indo-Pacific Warm Pool (IPWP) - Indonesian Maritime Continent region is a key 

area for global climate system as a major source of moisture and latent heat for the 

global atmosphere and plays a fundamental role in driving the globally important 

meridional Hadley and zonal Walker circulations [Keenan et al., 2000]. Studies have 

indicates that changes of sea surface temperature and convection in this tropical 

Indo-Pacific region contribute to the interannual, decadal, even millennial-scale climate 

variability observed in extra-tropical regions [Cane, 1998; Cane and Clement, 1999; 

Hoerling et al., 2001; Stott et al., 2002; Visser et al., 2003]. Important tropical climate 

systems with global impact, such as the El Niño-Southern Oscillation (ENSO), 

Asian-Australian Monsoon and Indian Ocean Dipole (IOD), strongly interplay within 

this region. The Indonesian maritime continent is also the only tropical intersection 

between major oceans for water mass and energy exchange. The Indonesian 

Throughflow (ITF) brings huge amount of cool, low-salinity water into the Indian 

Ocean and alters the meridional overturning circulation of the Indian Ocean [Gordon, 

2005]. The oceanic heat and freshwater fluxes into the Indian Ocean affect 

atmosphere-ocean coupling with potential impacts on the ENSO and monsoon 

phenomena [Webster et al., 1998] and their variabilities are believed to affect climate in 

interannual and longer time scales [Schott and McCreary, 2001]. 

The ITF has been shown strong variability in an extensive range of time scales. Remote 

forcing on interannual variability of the ITF from the tropical Pacific associated with the 

ENSO has long been recognised: a weakened ITF linked with El Niño and an 

intensified ITF linked with La Niña [Clarke and Liu, 1994; Bray et al., 1996; Meyers, 

1996; England and Huang, 2005; Susanto and Gordon, 2005]. The annual and 

semiannual variations in transport have been related to the monsoon winds [Meyers et 

al., 1995] and the equatorial Indian and Pacific winds [Masumoto and Yamagata, 1993; 

1996]. Intraseasonal variability [Bray et al., 1997; Qiu et al., 1999; Chong et al., 2000; 
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Potemra et al., 2002; Syamsudin et al., 2004] has been attributed to the remote Kelvin 

waves forced in the tropical Indian Ocean. The variability of the ITF has been 

complicated by the overlapped time scale of different forcings and most of the studies 

were based on short-term (several months to several years) observation or modelling, 

the only continuous observation is the decadal-long time series of Meyers [[Meyers, 

1996]. Detailed researches on individual passage and longer time series are needed to 

further understand the forcing and mechanism for the ITF variability and then the 

impact of the ITF on regional and global climate/oceanography and the interaction of 

the ENSO, IOD and the Asian-Australian monsoon systems. 

More than 40% of the ITF flows into the Indian Ocean via the Savu Sea [Gordon, 2005], 

which is located in the south-central part of the Indonesian maritime continent (Figure 

3.12). Strong annual variability (up to 12 Sv in 1996) in transport through Ombai Strait 

[Molcard et al., 2001a] which is the eastern control entrance for the ITF passing the 

Savu Sea. Recent oceanic observation and numerical model have shown that there can 

be up to a 10 Sv imbalance [Potemra et al., 2003] between the inflow and the outflow 

transport in the Savu Sea at times and most of the variability in estimated convergence 

is controlled by the flow through the Sumba Strait [Potemra et al., 2003] which is the 

western control exit for the ITF passing the Savu Sea, indicative of the importance of 

understanding the inflow and outflow in this Strait. Despite the importance of 

understanding the climate and oceanography in the Sumba Strait, only one attempt, to 

date, has been reported. In December 1995 to April 1998 a pair of sub-surface pressure 

gauges was deployed in the western edge of the Sumba Strait and concurrent Acoustic 

Doppler current profiler (ADCP) survey across the strait was employed as part of the 

three year Shallow Pressure Gauge Array (SPGA) study. Pressure, temperature and 

salinity data were recorded and a series of encouraging achievement have been reported 

[Chong et al., 2000; Hautala et al., 2001; Potemra et al., 2002; Potemra et al., 2003; 

Sprintall et al., 2003]. Here we report 37 years of oxygen and carbon stable isotope 

composition records during 1962 to 1998 from a modern Porites coral which grew just 

in the southern side of the strait within the Savu Sea near the shallow sill (about 900 m) 
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[Hautala et al., 2001] of the strait. The 18O and 13C 

records reconstruct the climate and oceanography in Sumba 

Strait with seasonal, interannual, decadal variability and 

long-term trends, which reflect strong impacts of the ENSO, 

IOD, and the Asian-Australian monsoon systems. The high 

resolution records enable us disentangle the complicated 

interaction of the ENSO, IOD, and monsoon, and show a 

37-year historical record of routine penetration of the coastal 

Kelvin wave remotely forced in the tropical Indian Ocean, 

implying strong impacts of the tropical Indian Ocean winds 

and local monsoonal winds on the ITF transport through the 

Sumba Strait and the Savu Sea. 

Figure 6.1 (right) X-ray positive print of modern coral RSM2b. Numbers 

show the years of coral growth. Yellow lines and Roman numbers indicate 

sub-sampling transects. 

6.2   MATERIALS AND METHODS 

6.2.1   Modern coral sampling 

The Porites sp. coral core RSM2b used in this study was 

collected from a patch reef  (9°27'30.7"S, 120°04'51.4"E) 

about 500 m off shore west of Mondu River (Fig.4.1, River 

Site) on 13 November 1998. This core (68 cm in length and 

7.5 cm in diameter) was drilled from a big living colony (2.5 

m in height from top to coral bottom) in 3 m water depth 

using a large RSES water-driven drill. No calcite and 

secondary aragonite over-growths were found by 

examination under UV light and thin-section observation, 
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indicative of excellent preservation for climate reconstruction. 

The coral core was slabbed, ledged, and sub-sampled for isotopic analysis following a 

procedure developed by [Gagan et al., 1994; Gagan et al., 1998]. X-ray photographs of 

the coral slabs (shown in Fig.6.1) were taken and used to develop a chronology and as a 

guide for sub-sampling transects along the axis of maximum growth. Sub-samples were 

collected continuously at intervals of 0.4 mm, which is or close to weekly resolution. 

6.2.2   Isotopic analysis 

Oxygen and carbon isotope analyses were obtained by reacting ~200 μg aragonite 

samples with two drops of 103% H3PO4 at 90°C for 12 minutes in an automated 

individual-carbonate reaction (Kiel) device coupled with a Finnigan MAT-251 mass 

spectrometer. The isotope ratios are reported in standard delta notation relative to 

Vienna Peedee Belemnite (VPDB) and calibrated via the NBS-19 calcite standard (18O 

= -2.20‰, 13C = 1.95‰) and the NBS-18 calcite standard (18O = -23.0‰, 13C = 

-5.0‰). 238 NBS-19 and 11 NBS-18 were analyzed during the measurement of 1087 

RSM2b modern coral sub-samples. The standard deviations (±2) were 0.07‰ (18O ) 

and 0.03‰ (13C) for NBS-19, and 0.08‰ (18O) and 0.07‰ (13C) for NBS-18. 

58 samples from the top 10 years of the coral were analysed by Mr. Bambang 

Suwargadi (LIPI, Bangdung, Indonesia) who visited our laboratory in November 2000. 

4 years later 29 of them were repeated during my PhD and reproducibility (±2, n = 29) 

is ±0.07‰ for 18O and 0.10‰ for 13C, showing good reproducibility in this 

laboratory even 4 years between the 2 time measurements. Some coral sub-samples 

were measured 2 or 3 times for better reliability, especially the samples during the 

austral winters, and average values were calculated. 

For most of the 18O and 13C records, every second sub-sample was measured, which 

equals almost fortnightly. But for periods when skeletal isotopic composition changed 

rapidly, such as during austral winters, neighboring sub-samples were added, resulting 
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in weekly resolution. The annual extensions for this coral varied between 15.6 and 20.8 

mm, with an average annual extension of 18.5 mm (excluding the year of 1975 of 

distorted growth). The sampling frequency of isotope analysis varied from 21 to 32 

samples per year (excluding 1975), and the average sampling frequency was 26.8 

samples per year, approximately equal to fortnightly resolution. 

6.2.3   Chronology 

The RSM2b core spans 37 years and 7 months from April 1962 to 13 November 1998 

(Figure 6.1). The years shown in Figure 6.1 were assigned by cross-checking the annual 

density bands counted from the X-ray positive image against the annual 18O cycles. A 

detailed chronology was established by assigning the annual arrival-time of the winter 

SST minimum in Sumba to each coral 18O annual maximum, and then allocating equal 

time spans to the data points between adjacent 18O maxima using linear interpolation 

by Analyseries [Paillard et al., 1996]. Analysis of SST records [IGOSS, Reynolds et al., 

2002] for 1982 to 2005 indicates that winter SST minima at Sumba (1o 
× 1

o
 grid centred 

at 120.5o 
E, 9.5

o 
S) arrive near 8 August (±32 day, 2n ). For the modern coral 

isotope records, 26 equal intervals were assigned between two neighbouring SST winter 

minima, so resolution of the chronology is similar to the measurement resolution. 

6.3   RESULTS AND DISCUSSION 

6.3.1  Reproducibility of coral records 

6.3.1.1   Different axes of growth in coral RSM2b 

In order to check the consistency of the isotopic composition of different axes of growth, 

overlapping sections of sub-sampling transects II and III were measured, which span 

from winter of 1976 to winter of 1977 (Figure 6.2).  

The two 18O records during this one year period impressively show the same trend of 
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change (point A to E in transect II and A’ to E’ in transect III). Both records even show 

small changes in mid-summer (increase in 18O value at points C and D in transect II 

and at C’ and D’ in transect III). Time-equivalent points of most of the two records have 

18O values within the standard deviation of measurement excluding points around 

winter of 1976 (E and E’ in Figure6.2), where smoothing of the record at E in Transect 

II happened because the cut depth had to be increased for the end part of this transect 

duo to an accident during ledge milling. Differences between the time-equivalent points 

E and E’ are greater than the standard deviation. The 18O and 13C records of Transect 

III were applied in this research because the smoothing in this part of Transect III makes 

the record unreliable. Also, the distortion in growth direction of Transect III (Figure 6.1) 

starts around the winter of 1976 and might has some effect on the data of 18O and 13C 

records. Figure 6.2 shows this complex growth does have effect on the 18O and 13C 

records, especially for period around 1975. 
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Figure 6.2  Comparison of 18O and 13C records for overlapping sections on sampling transects II and III for 

coral RSM2b.  Shaded parts are overlapped sections spanning from winter 1976 to winter 1977. 

6.3.1.2   Different corals in Sumba 

In order to evaluate the representativeness of the single-core reconstruction from 

RSM2b for the local climate and oceanography, stable isotope records of another coral 

SU1 from the same site (several hundred metres apart) is applied to compare the 
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reproducibility. Coral SU1 is a very small Poretis colony with dimension of about 30 

cm by 30 cm. Heather Scott-Gagan carried out all the sample preparation and 

measurement of 18O and 13C for coral SU1. But samples for both corals were 

prepared and measured according to the same procedure and methodology in the same 

laboratory at ANU. Since the difference of their average extension rate (18.6 mm for 

RSM2b and 14 mm for SU1 during the same growth periods 1985-1996), the 

sub-sampling step for SU1 is 0.3 mm, while RSM2b is 0.4 mm. The difference in 

sub-sampling steps guarantees that both coral were sub-sampled in weekly resolution 

and measured in fortnightly resolution. 
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Figure 6.3  Comparison of 18O/13C records of Sumba coral RSM2b (upper panel) and SU1 (lower panel). Red 

curves are 18O and blue curves are 13C. Please note that all the axes are reversed and the ranges of 18O/13C axes 

for the two panels are the same for convenience of comparison. 

Figure 6.3 compares the 18O and 13C records between these two corals. Both the 18O 
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and 13C records of RSM2b are well replicated by records of SU1. Two coral 18Os 

recorded ENSO events very well, such as heavier values in winter for El Niños in 1991, 

1992, 1994, and 1997, obvious lighter value in winter for La Niñas in 1989 and 1996. 

Both records have lighter values in summers of 1990 and 1996. They also both recorded 

evident elevated summer 18O values during 1991 to 1995. They have similar ranges of 

variation (0.71‰ for RSM2b and 0.63‰ for SU1) (Table 6.1). For 13C records, both 

have clear annual cycles and reach their annual maximum 13C around October. The 

ranges of variation are very close (2.38‰ and 2.45‰, respectively). Two records both 

have a trend of decrease from 1985 to 1996, especially, they both recorded obviously 

decreased values in the last three years 1994 to 1996. 

There also some difference between the two coral. The obvious difference between 

18Os is the small shift of 0.15‰ for their average values (Table 6.1: -5.44‰ for 

RSM2b and -5.59‰ for SU1). Even though 13C also have a shift of 0.33, the 

percentage of the shift in the range of variation is remarkably smaller than 18O (14%, 

14% for 13C and 21%, 23% for 18O).  

Table 6.1 

Comparison between isotopic records for corals RSM2b and SU1 (1985-1996) 

Coral RSM2b SU1 

Mean (‰) 18O -5.44 -5.59 
13C -2.37 -2.04 

Range of variation (‰) (2 * 2) 
18O 0.63 0.71 
13C 2.38 2.45 

Shift between means (‰) 
18O 0.15 
13C 0.33 

Percentage (%) of shift in the range of variation 
18O 23 21 
13C 14 14 

In general, the 13C and 18O records of Sumba coral RSM2b could be well replicated 

by coral SU1, even though SU1 is a very small colony and the extension rate is not as 
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stable as that of RSM2b. 

6.3.2   Seasonality of Sumba coral 18O 

Sumba Porites coral 18O record shows strong seasonality (Figure 6.4, upper panel). For 

some year, the seasonality were in a great magnitude, for example, in 1976, the value of 

coral 18O increased 0.65‰ from middle April to early August, and then dropped 

0.72‰ until early May 1977; in some year, however, the seasonal cycle was not 

remarkable, such as that in 1989-1990 cycle. 
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Figure 6.4   Time series of skeletal 18O (upper panel) and 13C records (lower panel) of modern coral RSM2b. 

Grey curves represent fortnightly records and black lines represent linear regression to highlight long-term trends. 

Heavy lines are 10-year Loess (smoothing technique with tricube weighing and polynomical regression) smoothed 

series to present decadal variability.  Thin lines show interannual variability by removing the seasonal cycles using 

1-year running average smoothing (red for 18O, blue for 13C). 

Figure 6.5 presents the coral 18O climatology during 1962 to 1998 (red curve with 

empty circles). The highest 18O occurred in winter and the mean of the winter highest 

was -5.16‰. Coral 18O stays around its highest in winter for only a short time, and 
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then it rapidly drops to summer low level of value and maintains below -5.40‰ for up 

to 7 months. During the whole summer and autumn, the coral 18O keeps decreasing 

until reach its annual lowest in early May, which is -5.52‰. It is noteworthy that there 

is a remarkable “hunch” during autumn (Late march through May) because of the 

extraordinary decrease of coral 18O. The scale of the “hunch” is 0.06‰ in terms of 

departure from the mean 18O in early March. The average difference between the 

winter high in early August and summer low in late April is 0.36‰, while the average 

difference between the winter high and the summer is close to 0.3‰. 
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Figure 6.5  Annual climatology of Sumba coral 18O (red curve with circles) and comparison with annual 

climatology of sea surface temperature (SST, black curve) and rainfall (green curve). SST data are from IGOSS 

[Reynolds et al., 2002] and rainfall data are from CMAP ([Xie and Arkin, 1997]. Grey shaded areas represent the 

austral winter (July to September) and light red shaded area represents prolonged summer (November to May). The 

vertical scale for 18O is adjusted to show the same temperature sensitivity with the SST scale (-0.189‰/℃). 

In Figure 6.5, 18O is scaled to have the same temperature sensitivity with the SST 

(-0.189 ‰/oC), which is the average slope of coral 18O-SST equations from literature 

around the Indo-Pacific Warm Pool [Abram, 2004]). It shows that the 3.1oC seasonal 
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range in SST would have been expected to result in about a 0.6‰ 18O range. Since the 

observed seasonal cycle of coral 18O is only about 0.3-0.36‰, sea water 18O must be 

changing through the seasons in response to changes in salinity around Sumba. Recent 

data of an assimilation experiment (SODA) shows the seasonal difference in SSS 

around Sumba is up to 0.4‰ between austral autumn and summer.  The average 

difference of SSS between summer and winter is also up to 0.2‰ (Figure 3.3, [Carton 

et al., 2005]). Direct measurements of SSS from May 1999 to December 2005 in the 

Sumba Strait demonstrated that the SSS difference between summer and autumn could 

be up to 1.5‰, such as the change from 34.2‰ in March to 32.7‰ in May 1996 

[Sprintall et al., 2003]. Therefore, salinity variability would play a key role in the 

Sumba coral 18O record. 

Figure 6.5 shows that, even though the impressive consistency in changes of the curves 

between the 18O climatology and the SST climatology, minor but arrestive 

inconsistency of these two curves occurs during the austral summer and autumn time. 

There are double peaks for SST, while coral 18O keeps decreases all the summer and 

autumn and has a remarkable peak (the “hunch”) in autumn. 

The relative change in coral 18O depends mainly on environmental variations in sea 

surface temperature (SST) and sea surface salinity (SSS). So, the obvious inconsistency 

between the Sumba coral 18O and SST in summer should result from variations in sea 

surface salinity. Local rainfall is a reasonable candidate for the source of change in SSS. 

Analysis of the timing of uncoupling of SST and coral 18O and the change in rainfall 

could help to decide if it is the case. The uncoupling begins in early November when 

SST continues to rapidly increase while the decrease in coral 18O evidently slowed, 

coincident with the start of rapid increase of rainfall; the uncoupling of the trends of 

change ends in the middle of February when rainfall begins to decrease rapidly. This 

indicates that the local rainfall might be connected with the coral 18O signal in summer 

(November through February). On the other hand, it is also possible that it is not be the 

case either, since the salinity change could result from direct input of water with distinct 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                          129 

salinity during summer. In contrast, the autumn “hunch” in coral 18O has nothing to do 

with the local rainfall because during this time the local rainfall has decreased rapidly 3 

months ago and it is impossible that the lagging of the impact of local rainfall resulting 

from lagged run-off effects after 3 month (our 13C average climatology shows that the 

impact of local rainfall is only 1 month and that includes the impact of both the inflow 

of its run-off and the lasting turbidity in sea water after the run-off). The raise in SST in 

autumn cannot be the reason either, because the former raise in summer in SST does not 

bring so high change in coral 18O even plus the positive effect of rainfall during the 

same time. Therefore, the “hunch” in autumn should result from an inflow of a huge 

amount of fresh water in autumn. The Sumba coral 18O “hunch” coincides with the 

distinct freshening of sea water in March to May in Savu Sea recorded by instrumental 

measurement during December 1995 to May 1999 [Sprintall et al., 2003]. Since local 

SST records a SST peak in the same time, the inflow of outside source should be 

low-salinity and warm. So the Sumba coral 18O annual climatology clearly records an 

input of a huge amount of low-salinity water of outside source in autumn. In late part of 

this chapter, analysis on interannual variability of the Sumba coral 18O shows that the 

important source of this fresh water is from the Indian Ocean, not other Indonesian 

inner seas or the Pacific Ocean. 

6.3.3   Interannual variability of coral 18O record 

6.3.3.1   Substantial interannual variability 

Interannual variability of the Sumba modern coral 18O record has been shown in 

Figure 6.1 after the seasonal cycles were removed (the thin red line). Even though the 

annual change of 18O was relatively small during 1962 to 1967, most of the time (1967 

to 1998) strong interannual variability is a remarkable character of this coral record. The 

difference in 1-year running averages between 1967 and 1968 is up to 0.16‰, and that 

is very nomal for most of the interannual variability during 1967 to 1998. The biggest 

interannual variability of this 18O record occurred during 1989 to 1994, which is 0.3‰ 
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of difference in annual average, and most of the change (0.25‰) happened in less than 

2 years (1989 November to 1991 October). 

Winter 18Os in July to September show much greater interannual variability than the 

annual averages, as shown as remarkable up-and-down in the blue curve in Figure 6.6. 

The dramatic decrease of winter mean 18O in some years is among the most 

conspicuous, such as that in 1968, 1973, 1978, 1984, 1989, 1996, and 1998, the 

decrease of winter mean 18O is around 0.25‰ compared with the previous winter. And 

in 1989, the seasonal cycle disappeared as a result of the vanished winter peak, bringing 

on a huge difference (0.42‰) of winter mean 18O in 2 years between 1989 and 1991. 

In contrast, the winter mean 18O increased a lot in 1969, 1972, 1976, 1982-1983, 

1990-1995, and 1997. 
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Figure 6.6  Substantial interannual variability of the Sumba modern coral 18O record. Red line represents the 

fortnightly 18O record. Blue line shows the winter mean 18O during July to September and the green line the 

summer mean 18O during November to May. Note that part of the 1975 summer record has been lost because of the 

wobbly growth of coral during that time (refer to Figure 6.1), so the 1975 summer mean 18O is not a real record of 

the climate and oceanography during that time. 
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Even if the interannual variability in summer mean 18O (November to May) is not as 

dramatic as that of winter mean 18O, some of the changes are still noticeable (green 

curve in Figure 6.6). One of them is the lasting increase of mean summer 18O during 

1991 to 1995, which presents a total increase of 0.22‰ in mean summer 18O. Another 

one is the obvious increase of mean summer 18O compared with the previous summer 

in 1964, 1970, 1973, 1977, 1980, 1986, and 1988. 

Since the strong interannual variability in winter and summer, the seasonality of the 

modern coral 18O record, accordingly, also has strong interannual variability. In 1976 

and 1983, the difference of 18O between winter and summer was more than 0.4‰; and 

in 1963, 1966, 1967, 1969, 1972, 1977, 1982, 1987, 1991, 1992, 1994, and 1997, the 

seasonal differences were all exceeded 0.3‰. In contrast, in 1998 and 1968, the 

seasonal changes of 18O were less than 0.1‰; and in 1964,1970, 1973, 1974, 1978, 

1981, 1984, 1986, and 1988, all the seasonal changes were less than 0.2‰. Extremely, 

in 1989, the seasonality disappeared, even reversed, the winter mean 18O is 0.1‰ 

lower than that in summer. 
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Figure 6.7  Interannual variability of seasonal 18O for Sumba coral RSM2b. The summer includes December 

through February and the autumn refers to March to May. 
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Figure 6.7 shows the interannual variability of seasonal summer coral 18O. Both the 

summer (December through February) and autumn (March to May, the “hunch” in the 

18O annual climatology) show noticeable interannual variability in 1960s and 1990 and 

minor interannual variability during 1970s and early 1980s, even the autumn shows 

stronger variability. The difference between summer and autumn presents strong 

interannual change only during 1960s, but a strong 5-year periodicity during 1980s and 

1990s. 

6.3.3.2   Local SST, rainfall and the interannual variability of coral 18O 

The 18O record of Sumba modern coral RSM2b is strongly correlated with the local sea 

surface temperature (r = 0.75, see Figure 6.8A). After seasonality is removed, the 

correlation decreases but still relatively high (r = 0.50, Figure 6.8B). 

However, the correlation is different in summer and winter. Even though the change of 

winter mean 18O is strongly correlated with that of winter mean SST (R = 0.71), the 

variabilities of 18O and local SST among summers only have weak correlation (R = 

0.10) (Figure 6.8C and D). 

The annual mean 18O is also related with local rainfall (R = 0.37, Figure 6.7D), but this 

correlation only results from the winter (R = 0.61, Figure 6.6C), because summer mean 

18O is not correlated with the local summer rainfall (R < 0.01).  

Figure 6.9 shows the correlation between seasonal coral 18O and the local SST and 

rainfall. Interestingly, the correlation of coral 18O with local SST and rainfall reverses 

in summer and autumn even though the correlations are relatively low (R = 0.20 with 

rainfall in summer, R = 0.22 with SST in autumn). However, the difference of coral 

18O between summer and autumn is obviously related with both the differences of 

local SST and rainfall between early and autumn. 
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Figure 6.8  Comparison of interannual variabilities between Sumba modern coral 18O record and local sea 

surface temperature and rainfall. (A): Sumba modern coral 18O record and local SST record. The coral 18O (red 

curve) is resampled as monthly record for correlation based on the fortnightly coral 18O data. The black curve 

represents local sea surface temperature record (1 by 1 grid centred at 120.5°E and 9.5°S including the study area) 

from the NOAA optimum interpolation monthly SST data set [Reynolds et al., 2002]. (B) through (D): comparison of 

winter (July to September), summer and autumn (November to May), and yearly (January to December) records of 

coral mean 18O, SST anomaly, and rainfall anomaly. The rainfall records are calculated from the NOAA CMAP 

precipitation data set version 1 in 2 by 2 grids centred at 121.25°E 8.75°S [Xie and Arkin, 1997] including the 

research area. 
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Figure 6.9  Comparison of Seasonal summer 18O of coral RSM2b with SST, rainfall, NINO3.4 index, DMI 

during 1979-1988. The sources of SST and local rainfall are the same as that in Figure 6.8. NINO3.4 index is from 

the LDEO (Lamont-Doherty Earth Observatory) data set “Extended Nino indices” at 

http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/.NINO34/ [Kaplan et al., 1998], and the DMI 

(Indian Ocean Dipole Mode Index is from http://iprc.soest.hawaii.edu/%7Esaji/dmi.txt [Saji et al., 1999]. The 

summer includes December through February and the autumn refers to March to May. 

Furthermore, it is correlated with the peak summer rainfall (R = 0.28). This result of 

correlation between seasonal characteristics of the summer coral 18O supports that 

there is a huge amount of input of outside source water in autumn and that is the reason 
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why the correlation reversed in early and autumn (Figure 6.9B and C). The obviously 

increased correlation between the relative decreases of 18O from summer to autumn 

and the rainfall during peak rainfall time (December to February) suggests that the 

autumn “hunch” in 18O is related to rainfall. Since the result also shows that it is not 

related to the local rainfall, an input of water from outside rainfall source should be a 

candidate of its cause on the ground that the outside rainfall is related to the local 

rainfall during the summer peak wet season. Since the whole area around Indonesian 

maritime continent experiences the north-west monsoon peak season almost in the same 

time during December through February and the interannual variability in rainfall 

should be strongly related, the source of the input fresh water from rainfall could be the 

whole area. 

6.3.4   Long-term and decadal variability of coral 18O 

6.3.4.1   Long-term trend and the 1976 shift 

Long-term trend towards lower 18O values is superimposed on strong seasonal cycles 

and interannual variability of the 37-year 18O record of Sumba modern coral (Figure 

6.4). The difference in 18O between 1962 and 1998 is 0.18‰. Instrumental record of 

sea surface temperature (SST) around Sumba from the NOAA NCDC extended 

reconstructed SST (ESSST) data set Version 2 [Smith and Reynolds, 2004], as shown in 

Figure 6.10, indicates that SST had the same trend and increased by 0.62℃ during the 

same period of time. 

But this temperature increase is not enough to account for all the range of change in 

18O. According to a 18O-SST dependence of -0.189‰ per ℃, which is a mean of eight 

published 18O-SST calibrations for Porites sp. from sites where 18Ow variations are 

negligible or have been incorporated in the calibration [see Chapter 3, cited from  

Abram, 2004], the SST increase only accounts for 64% of the whole range ( that is 

0.12‰ in 0.18‰). The coral record thus implies a freshening of 0.24‰ in salinity 

during this period based on an average relationship of 0.27‰ 18O per 1‰ salinity 
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[Fairbanks et al., 1997]. This freshening of sea water is associated with the additional 

decrease of 0.07‰, which is 36% of the whole decrease in 18O during this time. Figure 

6.10 shows that the freshening mainly happened during the 1980s. Freshening of 1980s 

in comparison with 1990 in the Indonesian-Australian Basin has also be reported from a 

recent study of the freshwater content of Indonesian-Australian basin [Phillips et al., 

2005]. 

Year

1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998

P
re

ci
pi

ta
tio

n 
(m

m
/d

ay
)

2.8

3.2

3.6

4.0

4.4

4.8

18
O

 (
pe

r 
m

il)

-5.55

-5.50

-5.45

-5.40

-5.35

-5.30

-5.25
S

S
T

 (
o
C

)
27.9

28.2

28.5

28.8

29.1

 

Fig. 6.10  Comparison of long-term trends and decadal variability between coral RSM2b skeletal 18O (red 

lines) and instrumental records of SST (ERSST from the US national Climate Data Center, black lines) [Smith and 

Reynolds, 2004] and rainfall (NOAA CMAP, green lines) [Xie and Arkin, 1997] around Sumba, Indonesia. Heavy 

curves represent 10-year smoothing to highlight decadal variability. Dashed pink lines represent 18O means of 

1962-1976 and 1977-1998, showing the 1976 climate shift in Sumba. Vertical scale for 18O is adjusted to show the 

same temperature sensitivity with the SST scale (-0.189‰/℃). 

Figure 6.4 indicates that most of the Sumba coral 18O long-term trend occurred in the 

1976 climate shift, which is characterized by a sharp rise in Pacific equatorial 

temperatures and has been identified as a change in the background state of the El Niño 

Southern Oscillation [Trenberth, 1990; Graham, 1995; Trenberth and Hoar, 1996; 

Rajagopalan et al., 1997; Guilderson and Schrag, 1998; Giese et al., 2002; McPhaden 

and Zhang, 2002; Vecchi et al., 2006; Wainwright et al., 2008]. The dashed pink lines in 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                          137 

Figure 6.10 show that the difference between the mean 18O of 1977-1998 and the 

mean 18O of 1962-1976 is up to 0.12‰, which is significant for a change of average 

climate. 

Nearly two-thirds of the Sumba coral 18O trend resulted from the 0.6℃ increase in sea 

surface temperature. The 0.6℃ increase of SST in the study area is the same as increase 

of the average global surface air temperature during the same time ([Jones and Mann, 

2004]. It also coincided with the 0.6℃ SST increase in the eastern part of the 

Indo-Pacific Warm Pool in central Pacific [Urban et al., 2000]. Even though individual 

El Niño events make SST cooler in Sumba and more El Niño has happened since 1976, 

the long-term trend of Sumba SST seems more likely affected by the background 

climate which has been regarded as a result of increased anthropogenic activity [Jones 

and Mann, 2004; Meehl et al., 2004]; the SST long-term trend in Savu Sea is likely 

related to the SST background trend in the Pacific which is one of the source area of 

inflow around Sumba through the Indonesian Throughflow. In the following parts of 

this chapter, our coral 18O record would show that the Indian Ocean input into the Savu 

Sea would have dominant influence on the SST and salinity due to remarkable inflow of 

very warm, low-salinity South Java Current (SJC) during November through May. So it 

is possible that increased input of the SJC could also contribute to the long-term trend of 

SST increase. 

6.3.4.2   Strong decadal variability and salinity reconstruction 

The same impressing as the long-term trend in the Sumba coral 18O record is the 

remarkable decadal variability, as shown as change in the heavy curves in Figures 6.4 

and 6.10. Remarkable increase of 18O in 1970s and 1990s and decrease of a period up 

to 10 years in 1980s are 3 periods of major decadal variability. The dramatic increase of 

18O in 1991 to 1995 is one of the most conspicuous multiannual variability of Sumba 

coral 18O record (Figure 6.4). The increases in 18O are 0.06‰ during 1972 to 1975, 

and 0.15‰ during 1989 to 1993 in the curve of decadal variability. The difference in 

18O between 1975 and 1989 is up to 0.23‰. 
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By comparison of 18O and SST records, Figure 6.10 shows that changes in SST control 

most of the variability of Sumba 18O record: all the cooling of SST in mid-1960, 

mid-1970, mid-1990, even minor mid-1980 cooling had been reflected by the Sumba 

18O record. However, uncoupling of the 18O and SST curves since the late 1970s until 

early 1990s indicates that, even though the increase of 18O during 1970s was more 

likely resulted mainly from SST cooling, freshening in salinity would play a much more 

important role in decreasing coral 18O during 1975 and 1992. 

The mid-1970s 18O increase seems to be mainly connected with the SST decrease. 

According to the 18O-SST dependence of -0.189‰ per ℃, the cooling in Sumba 

could be up to 0.3℃, the same as reflected by the instrumental ERSST records [Smith 

and Reynolds, 2004]. A 1970s SST cooling has also been recorded by a central tropical 

Pacific coral with the same amplitude of roughly 0.3℃ [Cobb and Charles, 2001]. And 

1970s air temperature cooling has also been recorded in many places. This could be 

another example of the strong influence of global background climate on the Savu Sea. 

Freshening of sea water became a more important factor in affecting the coral 18O 

decadal variability in Sumba during late 1970s and the whole 1980s. From early 1990s, 

both cooling in SST and saltier surface water contribute to the remarkable increase in 

coral 18O. The instrumental record indicates that the cooling during this period of time 

was about 0.3℃, which equals 0.06‰ of increase in 18O. So the extra increase of 

0.09‰ in 18O could be explained as increase of 0.3‰ in salinity in the early half of 

1990s. Even the impressive increase of Sumba coral 18O in the early half of 1990s 

seems to be associated with the unprecedented 1990-1995 El Niño event, our result of 

coral 18O analysis in the following part of this chapter supports that the decrease in the 

input of warm, low-salinity water from the SJC during this time might be the main 

reason for the coral 18O increase. The eruption of the volcano Pinatubo in June 1991 

could also contributed the cooling of early half of 1990s [Gagan and Chivas, 1995]. 
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Figure 6.11 Variability of the sea surface salinity (dark blue curve) in the Savu Sea during 1962 to 1998 

reconstructed from the Sumba coral 18O by removing the SST effect. Reconstruction is based on the coral 18O and 

the SST curves in Figure 6.10 using the 18O-SST dependence of -0.189‰/oC and the 18O-SSS dependence of 

0.273‰/psu [Fairbanks et al., 1997]. Also illustrated are the predicted salinity changes of the upper 180 m in the 

Australian-Indonesian Basin from NCEP (red thin line), ERA (blue) and ERA corrected (green) P-E data reanalysis 

[Phillips et al., 2005]. The data were kindly provided by H. Phillips and S. Wijffels. Note that even though their 

records are high-resolution data with strong interannual variability, and the interannual variability of the Sumba coral 

reconstructed SSS record has been suppressed, both indicate the same decadal variability (and amplitude) in the 

overlapped periods. 

Based on the uncoupling of the curves of SST and 18O in Figure 6.10, the history of 

variability in the sea surface salinity in the Sumba Strait during 1962 to 1998 could be 

reconstructed by removing the temperature effect (using the 18O-SST dependence of 

-0.189‰/oC and the 18O-SSS dependence of 0.273‰/psu), as shown in Figure 6.11. 

The reconstructed salinity curve shows a strong freshening happened during mid-1970s 

to 1989 and the change range was more than 0.4 psu. The same range of increase in 

salinity happened during 1990 to 1998 but this change is much quicker. In 1998, the 

salinity is almost the same as that in mid-1970s. The trend of increased salinity in the 
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Sumba Strait during 1990 to 1998 is consistent with that in the Australian-Indonesian 

Basin and the range of change is also comparable (Figure 6.11) [Phillips et al., 2005]. 

Their result started from 1980 and also showed a freshening trend during 1980 to 1987, 

consistent with part of this coral reconstructed salinity record in the Savu Sea during 

1974 to 1989. 

Even though the strong 1989 freshening coincided with a strong rainfall from a La Niña 

and a negative Indian Ocean Diploe event, there was no significant La Niña event 

happened in other years during the whole 1980s; in contrast, there are 2 very strong El 

Niño happened in 1982-1983 and 1987. Then single ENSO event is not the main reason 

of the freshening in the 1980s. In fact, the rainfall change around the Indonesian 

maritime continent resulting from the monsoon, ENSO, and IOD have evident influence 

in the interannual variability of the salinity in the Savu Sea (Figure 6.10, 6.11), but the 

main reason for the decadal or multidecadal variability of the salinity in the Savu Sea is 

not the rainfall around the Indonesian maritime continent. Strong freshening of sea 

water in the central Pacific since 1976 has been recorded by coral 18O records and 

decrease in salinity of 0.6‰ to 0.8‰ have been attributed to more rainfall or the 

eastward expansion of the warm pool because of more El Niño events since 1976 

[Urban et al., 2000; Cobb and Charles, 2001]. Since the Indonesian Throughflow (ITF) 

brings up to 10 Sv (1 Sv = 106 m3 s-1) of tropical Pacific water into the tropical Indian 

Ocean [Gordon, 2005] and 4.5 Sv of the ITF exits into the Indian Ocean by Savu Sea 

[Molcard et al., 2001b], the decadal change in salinity of the Pacific water could 

possibly influence the decadal salinity of the Savu Sea. As mentioned above, the 

following parts of this chapter would show strong input of the warm, low-salinity SJC 

water into the Savu Sea during November to May. So the freshening of the Savu Sea 

would also possibly indicate a decadal variation in input of the SJC water. This could be 

proved by the strong increase of salinity of the Savu Sea in 1991 to 1995 which 

coincides with the remarkably decreased penetration of the very fresh Kelvin wave 

forced in the tropical Indian Ocean. 
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6.3.5  13C record of Sumba modern coral RSM2b 

6.3.5.1   Annual cycles of Sumba coral 13C 

13C record of Sumba coral RSM2b has strong annual cycles as shown in Figure 6.4. 

For most of the years, the heaviest 13C value occurs in the late part of a year (around 

October), and two peaks of lighter 13C values in the early part and the middle of a year, 

respectively. Figure 6.12 presents the climatology of the Sumba 13C from 1962 to 1998. 

The 13C mean reaches its annual maximum of -1.62‰ in early October, but drops 

rapidly until late February to its annual minimum of -2.61‰. There is a minor decrease 

in May and June during its increase to the next annual maximum in October. The 

average range of annual change is almost 1‰, and the difference between the secondary 

minimum in June and the annual maximum in October is also up to 0.65‰. 

In contrast with coral 18O, coral 13C records are usually irregular and difficult to 

explain. The reason is that coral 13C generally has a complicated relationship with 

environmental and physiological variables. Potential influences mainly include 13C of 

reef dissolved inorganic carbon (DIC) [Swart et al., 1996], light related photosynthetic 

modulation of the isotopic composition of the coral internal DIC pool [Weber and 

Woodhead, 1970; Fairbanks and Dodge, 1979; Swart, 1983; McConnaughey, 1989; 

Wellington and Dunbar, 1995; Swart et al., 1996], symbiotic relationship between 

corals and zooxanthellae [Porter et al., 1989; Carriquiry et al., 1994; Allison et al., 

1996], heterotrophic vs autotrophic feeding [Carriquiry et al., 1994; Swart et al., 1996; 

Felis et al., 1998], coral spawning [Gagan et al., 1994; Gagan et al., 1996], colony 

topography [Cohen and Hart, 1997], and kinetic effects associated with the rate of coral 

growth/calcification [McConnaughey, 1989; de Villiers et al., 1995; Allison et al., 1996; 

Cohen and Hart, 1997; McConnaughey, 2003]. 
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Figure 6.12  Annual climatology of coral 13C (blue curve with triangles) and comparison with annual 

climatology of sea surface temperature (SST, black), rainfall (green), incoming short-wave radiation (orange), and 

Ekman pumping in the Savu Sea (grey). SST data are from IGOSS [Reynolds et al., 2002], rainfall data are from 

CMAP ([Xie and Arkin, 1997]. Radiation data is from Atlas of Surface marine data 1994 [da Silva et al., 1994]. 

Ekman pumping data is from Potemra et al. [Potemra et al., 2003]. 

Even though this complication, the Sumba 13C mean climatology seems to have a 

relatively simple and straightforward relationship with light and nutrient availability. 

Figure 6.12 puts together major environmental variables and compares them with the 

Sumba coral 13C. Unlike Sumba 18O mean climatology, Sumba 13C mean 

climatology has no correlation with the sea surface temperature mean climatology. 

Instead, it strongly correlated with local incoming short wave radiation and rainfall 

mean climatology. The strong correlation between the coral 13C and local incoming 

short-wave radiation lies in that they have almost the same timing of up and down with 

mean climatology curves (Figure 6.12). When radiation reaches its annual maximum, 

the coral skeleton is the most depleted in 13C in October; when radiation experiences 

annual lowest in June, the coral produces skeleton with the secondary minimum in 13C 

the same time. During that time, the ranges of change for them are also comparable. 
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However, during the whole wet season from late October through next May, their ranges 

of change are no longer comparable even though the timings of their changes are still 

strongly correlated. During that time, instead, the coral 13C strongly correlated with 

local rainfall. It is exactly synchronous for decrease of 13C and the increase of local 

rainfall from middle October through middle January. Noticeably, there are two small 

but evident inconsistencies between the two correlations. One is an inconsistency of 

timing: a lagging about 1 month occurs for the arrival of the annual lightest 13C in late 

February and the following increase of 13C behind the arrival of annual rainfall 

maximum in Late January and the following decrease of rainfall until early April; 

Another one is an inconsistency in range of change between the decrease of radiation 

and the coral 13C from middle April to middle June. Both the inconsistencies help us to 

attribute the annual 13C change to local light and nutrient availability. 

The control of light on coral 13C has been observed by many previous researches 

[Weber and Woodhead, 1970; Erez, 1978; Fairbanks and Dodge, 1979; Swart, 1983; 

McConnaughey, 1989; Wellington and Dunbar, 1995; Swart et al., 1996] and the 

following mode has been generally believed that coral calcification takes place from an 

internal inorganic carbon pool [Erez, 1978; Swart, 1983; McConnaughey, 1989]. This 

pool is composed of carbon derived from the ambient seawater and respiration and 

modified by fractionation during CO2 uptake by photosynthesis. The zooxanthellae 

photosynthesis preferentially fixes 12C and leave behind 13C, increases in the rate of 

photosynthesis therefore enrich carbon isotope ratio of the skeleton. The incoming 

short-wave radiation is highly correlated with incoming photosynthetically active 

radiation and the change of availability in incoming short-wave radiation would change 

the photosynthetic activity of Sumba coral’s endosymbiotic zooxanthellae, and then 

change 13C of Sumba coral skeleton. 

But our result indicates that the correlation between light availability and the skeletal 

13C in this Sumba coral works very well only when the local rainfall is at a low lever 

(less than 2 mm/day during Mid-June to mid-October, averagely). The decrease of 
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radiation raised from increased cloud cover during wet season is not enough to explain 

all the range of the increase in the coral 13C, because of the following two reasons: one 

is the range of the change is not enough; another one is the timing of the maximum 

cloudiness which is one month before the lightest 13C. Turbidity resulting from land 

run-off during or after rainfall might also be a possible reason for the decrease of coral 

13C because it could dramatically decrease the light availability for the symbiotic algae 

and it could meet both the above-mentioned condition in range and timing of change. 

This modern coral grew under strong influence of flood plumes of the local main river, 

the Mondu River. Even though the coral site is 3 km northwest from mouth of the river 

and 500 m offshore, it was still within the huge flood plumes of the river in summers 

because of the northwest direction of the water outflow and strong rainfall in summer 

(the mean summer peak rainfall from 1979 to 2005 is up to 925 mm in December, 

January and February). Long time of winter dry-season and focused summer strong 

rainfall makes the outflow in summer extremely turbid and brings huge amount of 

terrigenous particulate inorganic and organic matter into the sea. However, our result 

does not support the scenario that decreased light resulting from the turbidity is the 

major cause for the extremely low value in the Sumba coral 13C during the peak time 

of summer rainfall even though it could be a minor cause or one of the triggers for this 

change, since if decreased light was the main reason, that means the only major source 

of energy input for coral decreased dramatically, and then the growth of the coral should 

had been inhibited during that time. Our result of density analysis, however, shows that 

the growth of the coral during that time was enhanced, instead of inhibited (see next 

section 6.3.4.2). As rainfall reaches its annual peak, coral RSM2b grew more quickly as 

shown by a greater rate of extension and a gradually decreased skeletal density until a 

substantially low density band formed in the same time when the coral 13C reached its 

annual minimum during late February to early March. The occurrence of this 

dramatically increased rate of extension means that there was remarkable increase of 

energy input other than solar light during that time. We propose that the increased 

feeding of coral host (polyp) on terrigenous nutrients is the major cause of formation of 

the light skeletal 13C peak during summer wet season in the Sumba coral RSM2b. 
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We think increased feeding of the Sumba Porites coral resulted from the impaired 

zooxanthellae photosynthetic activity and the reinforced input of terrigenous nutrients 

during summer wet season. Even though the symbiotic algae could provide their coral 

host with up to 100% of its daily metabolic energy requirements [Muscatine et al., 1981] 

and in most circumstance they provide most part of them [Grottoli et al., 2006], 

researches have demonstrate that their photosynthetic activity could decrease even 

totally lose under some environmental stresses, such as elevated temperature and light 

[Porter et al., 1989; Jokiel and Coles, 1990; Fitt et al., 2000]. In Sumba, at least 3 

factors could impair the photosynthetic activity of the symbiotic algae during summer 

time. (1) Elevated temperature, which could be the main cause for formation of the 

“stress band” during October and November (see next section 6.3.4.2); (2) decrease in 

light availability because of increase in turbidity or (3) increase of cloudiness during 

rainfall peak time in December through next March. The decrease of the rate of 

zooxanthellae photosynthetic activity could results in decrease in intake of 12C from the 

coral inner DIC pool and increase of precipitation of 12C in coral skeleton [Swart, 1983; 

McConnaughey, 1989]. We think the decreased light input could only be a minor 

contributor for the light coral 13C during December to March in Sumba. Most 

importantly, it could trigger the stress response of coral animal to increase the feeding of 

terrigenous nutrients to meet their daily metabolic energy requirements. Our density 

analysis demonstrates that increased rate of growth of coral RSM2b coincided with the 

rainfall-derived terrigenous nutrient boom, showing strong connection between active 

metabolism with increased input of nutrients. Most recently, Grottoli et al [Grottoli et 

al., 2006] have found that some coral species could meet more than 100% of their daily 

metabolic energy requirements by markedly increasing their feeding rates and CHAR 

(per cent contribution of heterotrophicaaly acquired carbon to daily animal respiration) 

when coral loss its photosynthetic energy input from the symbiotic zooxanthellae. 

Porites colonies can switch from autotrophy to heterotropy depending on food 

availability and this plays an important role in interannual skeletal 13C variability 

[Felis et al., 1998]. Anthony [Anthony, 1999; 2000] found that coral from the inshore 

GBR have a greater capacity to feed on suspended sediment than the same species 
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living in the midshelf, suggesting a heterotrophic adaptation to the turbid coastal 

conditions. Risk et al. [Risk et al., 1994] also discovered that the coral 13C trend across 

the GBR shelf may result from shifting levels of autotrophy with changes in water 

turbidity. So it is reasonable to speculate that the increased availability of terrigenous 

nutrients and the decreased photosynthetic activity could dramatically change the 

proportions of heterotrophic to autotrophic feeding of the Sumba coastal coral. And that 

dramatic change should in turn result in severe depleting in 13C in coral skeleton in the 

peak wet season because C3 plant-dominated, land-derived organic matters are 

characteristically depleted in 13C (typically around -26‰ in 13C) relative to marine 

organic matters (typically around -15‰ in  13C) [O'Leary, 1981; Gagan et al., 1987; 

Goni et al., 1997]. 

The one month lagging of carbon 13C behind the rainfall contributes to the speculation 

in that river runoff may continue a short time after the rainfall peak, and importantly, the 

turbidity would last a longer time (up to 1 month at first and then the lagging decrease 

to half a month in March, see Figure 6.12) after the rainfall peak, so the land nutrients 

and terrigenous carbon in food chain could last for some time in Sumba coastal reef 

environment, such as one month. Even though we attribute the main reason for the 

secondary minimum of coral 13C during mid-April through mid-July to local radiation 

minimum, the inconsistency in the early part of this peak should partly be attributed to 

the remained level of rainfall (more than 2 mm/day) during that time and input of 

terrigenous nutrients made the coral 13C more depleted than radiation should be. 

Figure 6.12 also shows the comparison between the coral 13C and Ekman pumping 

mean climotology in Savu Sea [Potemra et al., 2003]. It shows that the monsoonal 

wind-driven Ekman up-welling might not be the major cause of the depleted peak of the 

coral 13C mean climatology during May and June, but we could not exclude minor 

contribution of upwelling prevailing during May to July. Rosenfield et al. provided 

direct evidence that coral could digest the sediment’s organic fraction [Rosenfeld et al., 

1999]. The monsoonal wind-driven upwelling re-suspends the bottom terrigenous 
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matter and reduces the water clarity. It could have the same effect on coral 13C as that 

of rainfall peak on the Sumba coral if the upwelling is strong enough in some year, such 

as that in June 1998. The extraordinarily light value of the Sumba coral 13C in June 

1998 might result from a strong upwelling, because there was no strong rainfall at that 

time, instead, it coincided with an dramatic SST decrease as shown by the heavy 18O 

(refer to Figure 6.4). 

6.3.5.2   Sumba coral density rhythms and its correlation with 13C record 

Sumba modern coral RSM2b shows very clear density banding; especially a sound 

annual lowest-density band in early part of a year makes it very easy to distinguish 

annual cycles from an X-ray photo of coral skeleton (Figure 6.1). In the upmost section 

which is the straightest part of this coral parallel with coral growth axis, these lowest- 

density bands formed in January to April (mean for 1988 to 1998 is March 3, ±35 day, 

2ncoincident with the late austral summer wet seasons, just after the annual 

rainfall maxima (Figure 6.13). Furthermore, the annual highest density bands appear 

immediately after the annual lowest density bands, i.e., both the lowest and highest 

density banding formed during late austral summer wet seasons. This observation is 

different with some Panama Porites modern corals in which the low density bands 

formed during annual dry seasons resulted from the higher rates of photosynthesis and 

greater extension rates triggered by decreased cloud cover [Linsley et al., 1994]. This 

difference may imply the unique of density banding of this Sumba coral. 

By careful observation, it could be found that, typically, there are 5 bands occur in every 

year even some more fine bands could be identified in some years, as shown in Figure 

6.14A and B. Band I is the above-mentioned lowest-density band, and band II is the 

highest-density band. Band III is a low-density band and then band IV is another 

high-density band. Band V is a low-density band and gradually changes to the 

lowest-density band (band I) of next year. 

This density rhythm pattern in this sumba modern coral is very special. Barnes and 
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Lough have noticed that almost all the published papers on coral density banding 

describe the annual pattern as one band of higher density and one of lower density 

[Barnes and Lough, 1989], even in corals with 12 or more fine bands which group 

together to form this kind of annual band couplet [Buddemeier, 1974; Barnes and 

Lough, 1989]. So the Sumba modern coral is very rare in that it has 2 dense bands and 2 

less dense bands (the exceptional low-density band is an extreme case of less dense 

band) in a certain year. Part of the reason of the recognition of this fine pattern is its 

unusual rate of growth, in many years it is around 20 mm/year. 
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Figure 6.13  Modern Porites coral RSM2b density banding compared with 18O/13C records and the 

rainfall. Orange lines go through the annual lowest density bands on the sampling transect and the blue lines 

correspond with the annual maximum of coral 18O. 

Figure 6.13C shows that the lowest-density bands correlate very well with one of the 

peaks of the annual minimum of coral 13C. They correspond to or immediately after 

these peaks which are located in the early part of a year related with summer rainfall 
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peak (see the previous section about annual cycles of 13C). In fact, all the 5 bands are 

corresponding to different stages of the annual 13C cycle. Figure 6.14B and C show a 

detailed example for this correspondence and Figure 6.15 shows a summary of 

correlation between Sumba coral density rhythms and coral mean climatology.  
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Figure 6.14  Detailed comparison of density rhythm with d13C/d18O records and rainfall. A: X-ray image 

of coral section 1993-1997. B: enlarged X-ray image of coral density banding in 1995. 
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The lowest-density band I corresponds to annual minimum 13C peak or immediate after 

it in late February and early March. The highest-density band responds to period after 

that until the secondary minimum 13C peak which is related to the annual radiation 

minimum (see the previous section). The low-density band III centred at the mid-winter, 

coinciding with lower annual SST and heavier 18O. It also coincides with the increase 

of coral 13C from its annual secondary minimum to its annual maximum. The second 

high-density band (band IV) corresponds to the early part of coral 13C decrease 

companying the increase of summer rainfall but stops when 13C reaches some value at 

low level in late November. From this point the skeletal density starts to decrease 

gradually and the low-density band V starts. The skeletal density decrease to a very low 

level in mid-February coinciding with the coral 13C and that is the next lowest-density 

band. 

Like coral 13C, coral growth (skeletal density, linear extension rate, and calcification 

rate) varies with different marine environments (mainly including temperature, light, 

nutrient availability, water turbidity, sedimentation, and hydraulic energy. See reviews 

in [see reviews in Lough and Barnes, 1997; Lough and Barnes, 2000]. Even though 

extensive research has been conducted since the discovery of annual density banding 

patterns in massive coral skeletons by Knutson et al. [see reviews in Knutson et al., 

1972], the conclusions have not always been in agreement. It seems likely that the 

sensitivity of corals to their environment varies with species and location [Lough and 

Barnes, 1997], and extension, density and calcification do not necessarily increase or 

decrease in concert in response to the changes in environmental conditions [Dodge and 

Brass, 1984]. However, many studies have shown that, at least for Porites, extension 

rate is inversely related to average skeletal density [Lough and Barnes, 1992; Scoffin et 

al., 1992; Lough and Barnes, 2000], and is directed linked with calcification rate 

[Dodge and Brass, 1984; Grigg, 1997; Lough and Barnes, 2000]. Therefore, in this 

study we assume that the denser bands of the Sumba Poretis coral represent lower 

extension rate and are linked with lower calcification rate, i.e. lower coral growth; while 

less dense banding including the lowest-density band represent higher extension rate 
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and higher calcification rate, i.e. higher coral growth. 

The unique complicated density pattern of Sumba coral provide an opportunity to 

further evaluate the environmental influence on coral growth, and the correlation 

between coral 13C and density banding could allow use of both characteristics to 

extract environmental information from Sumba fossil corals. 

Just like the analysis of coral 13C, in order to simplify comparison and find the major 

cause, annual mean climatologies of various environmental variables were applied and 

compared, as shown in Figure 6.15. Unlike the Sumba coral 13C climatology, which is 

basically controlled by the local radiation and the radiation control is sharply interrupted 

by strong rainfall in summer, the Sumba coral density banding seems to be mainly 

controlled by local sea surface temperature and this SST control is also intensively 

interrupted by local strong summer rainfall. 
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Figure 6.15  Summary of relationship between coral RSM2b’s density banding and annual climatology of 

various environmental variables. Shaded areas are different density bands: pink areas are the lowest-density bands, 

yellow areas are low-density bands, and light blue areas are high-density bands. I: the lowest-density band; II: the 

highest-density band; III: the winter low-density band; IV: V: the wet season low-density band. Other legend and 

sources of data is the same as in Figure 6.12. 
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During late March through November, the SST control is very evident. From middle 

June to early October, the coral seemed to have a optimum temperature environment 

(26.3 to 27.5℃  averagely) and coral had a fast extension rate and secreted a 

low-density band (band III). Late March through early June and October through 

November, the mean SST is over 27.5℃, the coral seemed stressed and experienced low 

extension rates and slow growth rates and produced two high-density bands (bands II 

and IV). Influence of temperature on coral extension and calcification rates has been 

clearly demonstrated by co-variation of extension and calcification with latitude in 

Hawaiian Archipelago [Grigg, 1997] and the Australian Great Barrier Reef (GBR) 

[Lough and Barnes, 2000]. 

Since corals are believed to generally live in temperature environment close (within 1 

and 2℃) to their upper lethal limit during summer months [Jokiel and Coles, 1990], 

they should be extremely sensitive to any increase in ambient temperature in summer 

time when the temperature has been in a high level. Jokiel and Coles’ study indicated 

the sublethal effects of expose to temperatures only 1 or 2℃ higher than the ambient 

mean on coral in Hawaii [Jokiel and Coles, 1977]. Glynn and D’Croz [Glynn and 

D'Croz, 1990] provided definite data showing steady decrease in densities of symbiotic 

dinoflagellates in proportion to the increase in temperature from 28, to 30 and then 32℃. 

Recent study in the Bahamas [Fitt et al., 2000] has clearly shown seasonal cycles in 

their tissue biomass and the symbiotic dinoflagellates: densities of zooxanthellae were 

highest during the coldest part of the year, generally preceding peaks in coral tissue 

biomass in the spring; both coral tissue biomass and symbiotic dinoflagellates densities 

declined through the summer and reached low level during the autumn or fall. They 

speculated that the reductions in coral tissue biomass from the spring highs through the 

autumn-fall lows involves seawater temperatures and their effect on increasing 

respiratory metabolism and decreasing energy reserves in the coral tissue, and 

contributed the decrease in densities of symbiotic dinoflagellates with increase in 
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temperature to decreased growth rate of the symbiotic algae and the heat stress. 

Therefore, the Sumba coral’s skeletal density rhythm during late March to November 

(Band II, III and IV) reflects coral animal’s growth changes which were controlled 

mainly by ambient seawater temperature through modulating coral respiration and the 

consumption of energy reserves, and changing the input of photosynthetic energy from 

symbiotic dinoflagellates.However, the seawater control on skeleton growth was 

interrupted when summer rainfall peak arrived. From Figure 6.15, this interruption 

occurred when the local rainfall was averagely above ~6 mm/day in late November, 

almost half on the way to local annual maximum mean (12 mm/day). During December 

through early March, a special low-density band occurred, especially, a very 

low-density band was secreted coinciding with the sharp peak of annual coral 13C 

minimum during late February and early March. Obviously, this period of rapid coral 

growth is not controlled by the local seawater temperature because the temperature 

remains at a high level. We attribute this rapid growth of coral to largely increased input 

of terrigenous nutrients during that time. Two reasons make us to attribute to 

“terrigenous” input: (1) largely increased availability of terrigenous nutrients during 

Sumba summer rainfall peak (details see the preceding Section 6.3.4.1); (2) sharply 

depleted 13C value during this time compared with the secondary lightest 13C from 

decrease in light availability in May and June because C3-plant-dominated terrigenous 

organic matters are much depleted in 13C than local marine materials [O'Leary, 1981; 

Gagan et al., 1987; Goni et al., 1997]. Four more reasons make us to speculate the 

intake of extra nutrients during that time: (1) occurrence of the low-density band V and 

the lowest-density band I indicates rapid coral growth; (2) high level of seawater 

temperature requires more energy for coral polyp to meet increased respiratory 

metabolism, while use of inner energy reserves and decreased input of photosynthetic 

energy from the symbiotic algae could no longer meet this requirement indicated by 

formation of two high-density bands (Bands II and IV) at similar even lower seawater 

temperatures; (3) proven capability of coral animals to markedly increase their feeding 

rates and percentage of contribution of heterotrophically acquired carbon to daily 

animal respiration [Risk et al., 1994; Felis et al., 1998; Anthony, 2000; Grottoli et al., 
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2006]; (4) confirmed less susceptibility of coral host for thermal stress than their 

symbiotic algae [Fitt et al., 2001], which could keep coral hosts’ vitality for even 

stronger feeding when their symbiotic zooxanthellae have remarkably lost their activity 

and their photosynthetic energy input have evidently decreased. 

So, during austral summer rainfall peak, the availabililty of terrigenous nutrients would 

have controlled the occurrence and intensity of the unique low-density band in Sumba 

corals. Since the input peak of terrigenous nutrients is connected with the summer 

rainfall especially the rainfall peak in December to Early March, we could apply the 

coral density band during that time to evaluate local rainfall in Sumba. In fact, by 

observing the X-ray photograph of the Sumba coral (Figure 6.1) and comparing it with 

the summer rainfall (Figure 6.8D), we could find some very good correlations. In 1984 

there was a very wide and evident low-density band, correspondingly, 1984 summer had 

the strongest summer rainfall in all the instrumental record from 1979 to 1999. 1989 had 

the secondary highest rainfall during the instrumental record, and also had a very wide 

low-density band in summer time. During 1990 to 1993, the summer especially the 

autumn rainfall is low (Figure 6.9C) and all of them had faint density bands during 

December to March; in contrast, in 1994, 1995 and 1996 the rainfall increased a lot and 

they had very bright low-density bands during summer.  

The control of rainfall on summer time density band could be best demonstrated by the 

1997 banding. Even though in summer during December 1996 to February 1997 there 

was strong rainfall due to La Niña and there was a low-density band, it did not fully 

develop. Instead, there was a remarkable high-density band developed immediately after 

that low-density band, because a strong El Niño suddenly happened in March 1997 

(Figure 6.9) and immediately brought down the rainfall from early March (Figure 

6.13A). We think that the abnormally low rainfall during the remaining 1997 summer 

time until May made the temperature as the main control factor again on coral growth 

because there were no enough extra nutrients to meet the elevated requirements for 

energy at this high level of summer temperature.  
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Given the good correlation between summer rainfall and the summer lowest-density 

band, we could use this unique band to detect changes in rainfall before the instrumental 

record. Figure 6.1 shows a very bright low-density band during 1978 summer time 

which is the most conspicuous low-density band of the whole coral record. Interestingly, 

an abnormally low 13C value peak coincides with this brightest low density band and 

this low 13C is also the most conspicuous peak in the whole coral 13C record (Figure 

5.4). The most possible cause is that in 1978 there was a very strong summer rainfall or 

land runoff, even though a strong upwelling could also have the same effect because a 

coincident sudden increase in coral skeletal 18O (Figure 6.13) showing a possible 

decrease in seawater temperature in the mean time. Two reasons, however, make the 

strong rainfall be more preferred than a strong upwelling: (1) it happened during a 

northwestern monsoon season peak time (January) and a huge input of runoff from 

heavy rainfall could remarkably decrease the sea water temperature in the vicinity of the 

Mondu River mouth. The coincidence of the timing of the summer minimum in sea 

surface temperature climatology (late February) with the minimum in coral 13C 

climatology (also in late February) supports that the heavy input of runoff could 

remarkably decrease the SST (averagely up to 0.5℃). (2) In the Savu Sea, strong 

upwelling happens when southeast monsoonal wind prevails during Late May to July 

[Potemra et al., 2003] as shown in Figure 6.9. The coincident 18O increase also 

provides another possibility: the suddenly increased seawater salinity, since slight 

elevation of salinity might impart increased resistance to other physical stresses [Coles 

and Jokiel, 1978] such as high level of summer seawater temperature in Sumba. But it 

seems not to be the case for our coral records because it is hard to explain a salinity 

increase in January in this area. Other obvious low-density bands before instrumental 

record include that in summers of 1976, 1972, and 1971 (Figure 6.1), which could also 

be linked to high level of summer rainfall since during all of these three years strong La 

Niña occurred during summers (refer to Nino 3.4 Index and Southern Oscillation Index 

in Figure 6.20). 
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6.3.5.3   Interannual variability of Sumba coral 13C record 

Even the high resolution fortnighly Sumba coral 13C record shows strong interannual 

variability (Figure 6.4), curve of annual mean (January to December) of the 13C is 

much smoother (Figure 6.16A). The change of the annual mean 13C looks like to be 

controlled by the same factors that control the decadal variability of the coral 13C 

because this annual mean curve resembles the decadal variability curve very much (the 

blue heavy curve in Figure 6.4).  
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Figure 6.16  Interannual variability of coral 13C record. A: annual mean 13C. B: sub-annual components 

of coral 13C. 

Under the smooth change of annual mean is the remarkable interannual variability of 

sub-annual components of the coral 13C record. The climatology of this 13C record 
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shows there are 3 typical sub-annual components: (1) an annual maximum which is 

linked to the annual maximum of radiation during late August to October (“Sunshine 

Peak”); (2) an annual minimum connected with summer peak rainfall during December 

to March (“Rainfall Peak”); (3) the secondary annual minimum which is coincided with 

the annual radiation minimum and also influenced by the autumn rainfall during May 

and June (name as “May & June Peak”). Figure 6.16B shows interannual variability of 

the 3 sub-annual components of the coral 13C. Among the 3 components, interannual 

variation of the “Sunshine Peak” is relatively smooth, and the “May & June Peak” 

showsthe strongest interannual variability. 

Figure 6.17 presents the interannual variability of relative difference of the 3 sub-annual 

components. The difference between the “Sunshine Peak” and the “May & June Peak” 

shows the biggest interannual variability. The difference between the “Sunshine Peak” 

and the “Rainfall Peak” shows obvious correlation (R = 0.39) with the summer peak 

rainfall (December to February), further confirming the connection between them. 
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Figure 6.17  The relative variation of sub-annual components of coral 13C record. Panel A is the “Rainfall 

Peak” and its correlation with the rainfall during peak wet season. 

Figure 6.18 shows detailed comparison between the 13C and the 18O of this Sumba 

coral. 
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Figure 6.18  Detailed comparison between 13C and 18O records of the Sumba coral RSM2b. Grey shaded 

areas represent winter (July to September) and Yellow shaded areas represent summer season (November to May). 

Numbered green arrows indicated Kelvin wave events recognised by Syamsudin et al. during 1993 to 1998 

[Syamsudin et al., 2004] 
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6.3.5.4   Decadal variability and long-term trend of the coral 13C record 

Decadal variability 

Just as demonstrated above, substantial decadal variability of the coral 13C controls its 

interannual variability. And Figure 6.4 shows, compared with its 18O record, Sumba 

coral RSM2b has much stronger 13C decadal variability relative to their seasonal cycles. 

The most remarkable decadal variation is two periods of much heavier values of 13C: 

one was during 1960s which peaked in 1966, the other was much prolonged during the 

whole 1980s and early 1990 which peaked in1986. 

Figure 6.19 compares the decadal variabilities among the 13C, 18O, and sea surface 

temperature. The influence of seawater temperature seems to be one of the evident 

factors for decadal variability and long-term trend of the Sumba 13C record. In this 

coral 13C record, every obvious decrease\increase in seawater temperature was 

companied by increase\decrease in coral 13C or decrease\increase in rate of changes of 

13C which resulted by other factors. It is obvious that the heavier 13C during 1960s is 

strongly linked to the decreased seawater temperature, and decreased temperature in 

mid-1970s and mid-1980 contributed to the heavier 13C during those times. Also, 

decreasing temperature during in 1990-1993 obviously lowered the rate of decrease in 

13C. We speculate that the reason why the seawater temperature affects the decadal 

variation of Sumba coral 13C is that the elevated ambient temperature decreases the 

ratio of photosynthesis vs respiration by increasing the rate of respiration and/or 

decreasing the photosynthesis in the zooxanthellae and coral tissures [Jokiel and Coles, 

1977; 1990; Fitt et al., 2000; Fitt et al., 2001] and the deceased photosynthesis vs 

respiration ratio would then produce skeleton with depleted 13C [Swart, 1983; Swart et 

al., 1996]. 

The other recognizable factor impacting the decadal variability of the Sumba coral 13C 

seems to be the decadal variation in seawater salinity. Sumba coral 18O record has 

shown an obvious freshening during the whole 1980s and an evident increase in salinity 

in the following four years of 1992 to 1995. The former coincides with the prolonged 
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period of heavier coral 13C and the latter is in the same time when the 13C is 

obviously depleted, indicating that in decadal time scale, the slight freshening of 

ambient seawater could possibly make the coral deposit heavier skeletal 13C and slight 

increase in salinity could result in lighter coral skeletal 13C. The increase in 13C 

during 1996 to 1998 might also result from the freshening of seawater during that time. 

Long-term trend 

Even though the 13C record does not show obvious climate shift in 1976, which is very 

evident in the 18O record, it does has a long-term trend of becoming lighter, just as 

same as the long-term trend in the 18O record (Figure 6.4). In the whole record of 37 

years of the Sumba coral RSM2b, there is a decrease in coral 13C of 0.87‰, that means 

-0.024‰ per year. This rate is very close to the high end of the range of published 

values of the oceanic Suess effects during the past several decades: from -0.007 to 

-0.026‰ per year [Druffel and Benavides, 1986; Quay et al., 1992; Bacastow et al., 

1996; Gruber et al., 1999; Bohm et al., 2002; Kortzinger et al., 2003; Tanaka et al., 

2003].  

The oceanic Suess effect is the decrease of the 13C of dissolved inorganic carbon (DIC) 

as a consequence of CO2 exchange with the atmosphere in which the addition of 

anthropogenic CO2 (resulting from the burning of fossil fuel and changes in land use) 

has caused a decrease in the 13C/12C ratio of atmospheric CO2 because the 

anthropogenic CO2 is depleted in 13C due to the preferential uptake of 12C during 

photosynthetic utilization of CO2 by plants. The decrease of the 13C in the ambient 

dissolved inorganic carbon definitely would influence the 13C of the coral skeleton.  

But, since coral does not secretes skeletal aragonite in equilibrium with the ambient 

DIC system and various physiological and kinetic factors control the skeletal 13C, it is 

hard to say how much the oceanic Suess effect had influenced the long-term trend of the 

Sumba coral 13C. Since the trend of -0.024 is almost the upper limit of reported Suess 
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effect, it is reasonable to speculate that there are other factors affected the Sumba coral 

13C. Seawater temperature is one of the possible candidates because the decadal 

variation of seawater has strong link with the decadal variability of the coral 13C. The 

long-term trend of lighter Sumba coral 18O has been attributed mainly to the increase 

in seawater temperature, and the long-term trend of lighter 13C could be also partly 

attributed to the warming trend of the seawater. If the long-term trend of depleted coral 

13C is strictly attributed to the increase in temperature, that would mean a decrease in 

coral 13C of 0.87‰ vs. a rise in temperature of 0.61℃, or 1.40‰ decrease in coral 

13C vs. 1℃ rise in seawater temperature. But, more possibly, both the warming 

seawater and the oceanic Suess effect could contribute the long-term trend of depleting 

coral 13C in Sumba. 
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Figure 6.19 Decadal variability of the coral 13C (blue curve) and comparison with 18O (red) and SST (black). 

6.4  SYNTHESIS OF FORCINGS 

The climate of the southern sector of the Indonesian maritime continent is influenced by 
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ENSO, the IOD ocean-atmosphere system and the Asian-Australian monsoon system 

[Philander, 1990; Webster et al., 1998; Yamagata et al., 2004]. These three systems 

interact and it is thus necessary to evaluate their impacts and evolutions separately on 

the local climate and oceanography. The previous analysis in this chapter has shown the 

potential of the Sumba coral 18O and 13C for this because they have responded to 

different climate elements in different seasons. This section will synthesize those 

connections and show how the seasonality of the Sumba coral 18O and 13C records 

can be used to make inferences about the individual influence of the three systems. 

6.4.1  Spectral analysis of forcings 

Firstly, we will present periodicity on interannual variability of the seasonal 

characteristics of the coral 18O and their connections with ENSO, IOD, and the 

monsoon. 

6.4.1.1 Periodicity of coral 18O interannual variability 

Figure 6.20A illustrates the periodicity of seasonal coral 18O. Since the Sumba coral 

18O climatology was shaped mainly by seasonal characteristics in austral winter (July ~ 

September), summer (November ~ February), and autumn (March ~ May) (Figure 6.5), 

the periodicities of mean 18O in the three seasons, as well as annual means (January ~ 

December), have been analysed. First, the mean 18O for the corresponding season of a 

year was calculated. Then, 18O was obtained by subtracting the subsequent year’s 

mean. The Blackman-Tukey spectra of those seasonal signals were then obtained for 

18O of the whole record by applying the Analyseries software [Paillard et al., 1996] 

using a Bartlett window. 18O was used (rather than 18O) to focus the analysis on 

interannual variability and to suppress the decadal signals. Comparison of analyses of 

18O and 18O has indicated that using 18O could effectively keep periodic 

characteristics between 2 to 5 years. 
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Figure 6.20 Spectral analysis of seasonal characteristics of the coral 18O record and their correlation with 

indices of ENSO, IOD, and the Asian-Australian Monsoon systems. A: Blackman-Tukey spectra of seasonal means 

of 18O of the modern coral RSM2b in austral winter (July to September), summer (November to February), and 

autumn (March to May) from 1962 to 1998. C: Blackman-Tukey spectra of NINO3.4 index (blue curve in left panel), 

DMI (red in middle panel), and All India summer monsoon rainfall (ISMR, green curve in right panel). The upper 

panels are for data during 1962~1998, the lowers for all available data. . Annual means of those indices are used for 

the spectral analysis. Data sources: NINO3.4 index and ISMR from Lamont-Doherty Earth Observatory data sets at 

http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/.NINO34/ [Kaplan et al., 1998] and 

http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.india/ [Parthasarathy et al., 1995], the DMI from Saji’s 

personal webpage at http://iprc.soest.hawaii.edu/%7Esaji/dmi.txt [Saji et al., 1999]. B: Cross-spectra of seasonal 

coral 18Os with NINO3.4 (blue), DMI (red), and All India summer rainfall (green) during the same time period of 

1962 to 1998. Spectral analyses are completed using Analyseries 2.0 [Paillard et al., 1996] and a Bartlett window is 

used when generating the Fourier spectra. The bandwidths are 0.0517241. Non-zero coherences are higher than 

0.581075. The numbers on the top of the peaks highlight major periodicities as year(s)/cycle. 
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6.4.1.2 Periodicity of ENSO, monsoon, and equatorial Indian Ocean forcing 

The results of the spectral analysis on the annual means of indices characterizing the 

three climate systems are shown in Figure 6.20C. The upper panels estimate the power 

spectra for data from 1962–1998 which is the same period for the modern coral record, 

and with the lower panels for all available data. 

Periodicity of ENSO: NINO3.4 SST index from the central tropical Pacific was 

spectrally analysed to represent the periodicity of ENSO. The power spectrum for the 

NINO3.4 index during 1962–1998 has variance concentrated in the characteristic 3.6 yr 

and 5 year bands (upper left panel in Figure 6.20C), which is consistent with previous 

analyses of the NINO3 index for 1960–1998 by Hughen et al. [1999] and analysis of all 

El Niño events between Little Ice Age and the present by Enfield and Cid [1991].  The 

spectral peaks around 3.6 and 5 yr are not due to aliasing by using annual means and 

spectral analysis using annual means of NINO3.4 index in this study could effectively 

catch the periodic characteristics of ENSO. Since 18O was used to estimate the power 

spectra for coral records and the low-frequency bands near or above 5 year have been 

suppressed, only the 3.6 year band was used as a characteristic period for ENSO in this 

study.  

Periodicity of monsoon: Even though early studies considered the monsoon to be a 

regional physical entity, the trend in modern monsoon studies has been toward an 

understanding of the ‘global’ monsoon by studying the dynamic links between regional 

subsystems [Meehl, 1987; McBride, 1998; Webster et al., 1998; Trenberth et al., 2000; 

Clemens et al., 2003; Chang et al., 2004].  The most active Indian, East Asian, and 

Australian monsoons are now often referred to as one macroscale phenomenon with the 

tropical convective maximum migrating from over north India in July to Indonesia and 

northern Australia in January [Meehl, 1987; Hung et al., 2004; Chang et al., 2005]. A 

quasi-biennial variability (2–3 year period centred on 2.6 years, referred to as the 

tropospheric biennial oscillation – TBO) has been found to be a fundamental 

characteristic for monsoon rainfall in south Asia, East Asia, Indonesia, and the 
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Australian subsystem regimes [Meehl, 1997; Webster et al., 1998 and references there; 

Meehl and Arblaster, 2002]. Even though the ENSO and IOD also display minor TBO 

signals, we attribute TBO signals mainly to the monsoon when the TBO is obviously 

dominating the power spectrum over other peaks in the 2–5 yr band. There is 

considerable seasonal persistence from the south Asian to Australian monsoon with a 

strong south Asian or Indian monsoon tending to precede a strong Northern Australian 

monsoon, and vice versa [Meehl and Arblaster, 2002; Loschnigg et al., 2003; Hung et 

al., 2004]. So, it is reasonable that the All India Summer Monsoon Rainfall dataset has 

been used for spectral analysis in this study to display the characteristic quasi-biennial 

variability of the Asian-Australian monsoon in the absence of long-term and complete 

archives of local rainfall (Figure 6.20C right panels). 

Periodicity of IOD and equatorial Indian Ocean forcing: The middle panels of 

Figure 6.20C illustrate the cyclicity of IOD events [Saji et al., 1999; Webster et al., 

1999] by estimating the power spectrum of the Dipole Mode Index of SST anomalies in 

the eastern and western equatorial Indian Ocean [Saji et al., 1999]. Even though 

controversial theories have been suggested for the forcing of this recently discovered 

phenomenon [Baquero-Bernal et al., 2002; Meehl and Arblaster, 2002; Yamagata et al., 

2004; Yu and Lau, 2004a], the IOD has been found to be strongly influenced both by 

ENSO [Baquero-Bernal et al., 2002; Yu and Lau, 2004a] and the monsoon [Loschnigg 

et al., 2003; Yu and Lau, 2004a]. The power spectrum of the DMI clearly displays their 

strong impacts around the 5 and 3.6 yr (for ENSO) and the TBO periods (for monsoon) 

(Figure 6.20C middle panels). However, the most salient peak in the DMI spectrum is 

the strong and well-separated peak around the 3-year period, which is not evident in 

both the ENSO and monsoon spectra.   

The result suggests that some unique process within the Indian Ocean might be involved 

in the formation of IOD events. Recently Wijffels and Meyers [2004] noticed that the 

equatorial Indian Ocean winds have much more energy at higher frequencies with 

spectral peaks near 3 yr and 1-2 yr compared to the lower-frequency energy of the 
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Pacific winds (periods >3.2 yr, ENSO band) and used this to distinguish the impact of 

these two sources of remote energy on the Indonesian throughflow. Sakova et al. [2006] 

also identified a very clear and well-separated 3-yr period for sea surface height 

variability over the Sumatra-Java upwelling region and the western tropical Indian 

Ocean where the zonal equatorial Indian Ocean winds have substantial influence. So 

this 3 year period might represent the remote equatorial Indian Ocean winds which play 

a role in the IOD.  

Change in periodicity: The spectral analysis using the annual means has also revealed 

changes in ENSO behaviour, such as spectral shifts from lower amplitudes and longer 

periods (5.7 yr) to higher amplitudes and shorter periods (3.6 and 5 yrs) in the 1970s, 

which is consistent with previous results [Hughen et al., 1999; Kumar et al., 1999].  

But the 3.6 yr period is still one of the most important characteristics of ENSO 

variability since 1856.  Interestingly, Enfield and Cid [1991] demonstrated that the 3.5 

and 5 yr periods did not change since the Little Ice Age, and Rodbell et al. [1999] 

showed that the modern ENSO periodicity of 3.6 and 5 yrs has been established since 5 

ka.  Therefore, in this study it is reasonable to use the 3.6 yr period to correlate the 

ENSO with coral records during the period 1962 to 1998.  The quasi-biennial periods 

(2–2.8 yr) are fundamental for the monsoon so we assume its consistency during this 

period.  There is no historical record for the variability of the IOD, so we have tried to 

establish the periodicity of the IOD in this study. 

Similar results have been obtained from all the analysis of periodicity in the coral 

records and instrumental data using the Lomb-Scargle periodogram and a Bartlett 

window applying the AutoSignal software, indicating that the results are not biased by 

different spectral methods. 

6.4.1.3 Connections between seasonal coral 18Os and the climate systems 

In this study, we use 3.6, 3.0, and 2.6 yrs/cycle as characteristic periodicities of the 

ENSO, IOD, and the monsoon systems to explore their impact on the Sumba coral 18O 
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record. Figure 6.20A shows those as the major periodicities of the coral 18O 

interannual variability in the 2-5 year time band.  The 3.6 yr periodicity dominates the 

3 and 2.6 yr periodicities in the winter coral 18O. The cross spectra in the left panels of 

Figure 6.20B demonstrate that those 3 periodicities of the coral winter 18O have the 

strongest coherences with ENSO, IOD, and the monsoon, respectively. We think this 

result indicates that, in winter, ENSO has dominant impact on the Sumba coral 18O 

record, even though the IOD and monsoon still have their obvious signals. 

In contrast, the middle panels of Figures 6.20A and B indicate that the IOD 

overwhelmingly affects the summer coral 18O, with relatively minor impacts from 

ENSO and the monsoon.  Furthermore, the right panels in Figures 6.20A and B 

demonstrate the combined strong impact of the IOD and the monsoon on coral 18O in 

autumn, with only minor impacts due to ENSO.  

This spectral result reinforces the analysis of the annual climatology and the correlation 

between rainfall and the seasonal characteristics of coral 18O. The autumn 18O is 

strongly linked to external sources of fresh water provided by monsoonal rainfall.  The 

fact that the autumn 18O has almost equally strong imprints of both the IOD and 

monsoon strongly implies that the forcing connected to the autumn coral 18O is from 

the Indian Ocean. 

6.4.2  Dominating influence of ENSO events in winter 

The dramatic interannual variability of the winter coral 18O reflects the dominating 

influence of ENSO events on the winter climate and oceanography in the Sumba Strait. 

Figure 6.21 shows the comparison between the Sumba 18O record and typical ENSO 

indices. 

ENSO events strongly influence the winter coral oxygen isotopic composition. During 

an El Niño year, the Sumba winter coral 18O is enriched in 18O, while during a La Niña, 

the winter coral 18O is depleted in 18O. The winter 18O anomaly in a La Niña year 
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appears bigger than that in an El Nina year. After the long-term trend and most of the 

decadal variability are removed, Figure 6.22A shows further the strong correlation of 

the variability of winter coral 18O with the ENSO events. All the winters with 

relatively depleted 18O are related to La Niña events. Sumba coral winter 18O 

recorded all the 10 El Niño events during 1962 to 1998 according to the definition of El 

Niño [Trenberth, 1997] when the winter coral was obviously enriched in 18O. An 

obvious exception happened in 1967, when the winter coral was enriched in 18O but 

there was no El Niño that year. The reason is that in 1967 there was an Indian Ocean 

Dipole (Figure 6.22A) and it brought low SST and low rainfall around Sumba. Another 

minor exception is year 1985, when winter coral was slightly enriched in 18O but it was 

nothing to do with an El Niño or Indian Ocean Dipole event. The reason is still unsure, 

but the winter SST in 1985 was low, maybe connected with the mid-1980s’ cooling. 

Even though there are 2 years that are exceptions, the other 35 winters are strongly 

influenced by ENSO events. Therefore, the Sumba winter 18O record could be a very 

good index for ENSO events. Given the small change in winter SST which resulted 

from ENSO events, the winter variability in coral 18O amplifies the ENSO events. For 

example, the difference of winter average SST between 1987 El Niño and subsequent 

1989 La Niña was 1℃, equivalent to 42% of average seasonality of SST (2.4℃); while 

coral 18O difference was 0.33‰, equivalent up to 138% of average seasonality of 18O. 

Another example is the difference between 1996 La Niña and 1997 El Niño: the SST 

change was 1℃, 42% of average seasonality of SST, while the coral 18O change was 

0.18‰, equivalent to 75% of average seasonality of coral 18O. This amplification of 

signals further guarantees the Sumba coral winter 18O as good index of ENSO events. 

As shown in Figure 6.22B, the seasonality anomaly of Sumba 18O is also strongly 

correlated with ENSO events.  La Niña years produce negative 18O anomalies while 

positive anomalies occur in El Niño years.  
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Figure 6.21  Comparison of modern coral RSM2b 18O record with monthly ENSO Indices and Indian 

Ocean Dipole index DMI. SOI is from the Australian Authority of Meterology and the sources of NINO3.4 and DMI 

is the same as Figure 6.9. Shaded areas represent El Niño years based on the definition of Trenberth [Trenberth, 

1997]. 

The fortnightly Sumba coral 18O could help to understand how ENSO influence the 

climate and oceanography around Sumba. The most direct influence is by modulating 

the local rainfall and air temperature through atmospheric teleconnection (then the local 

SST by air-sea heat flux) because of the moving of the Indonesian Low. This 

ocean-atmosphere coupled effect should contribute the local Sumba climate and 

oceanography without much lagging, which could be evident by comparing the timing 

of NINO 3.4 and SOI index (Darwin is close to the research area). Remarkable lagging 

of ENSO signal in the coral 18O could help us to understand another mechanism of 

ENSO influence, i.e. by the Indonesian Throughflow. One of the strongest El Niño 

started from Aril 1982, reached its peak in January 1983 and ended in July 1983 

according to Trenberth’s definition [Trenberth, 1997], while the coral recorded very 

strong El Niño signal in August 1983 (Figure 6.21). Since the local SST and rainfall in 

1983 winter (Figure 6.8C) had been not as low as that in 1982 winter, the stronger El 

Niño signal in 1983 should not come from the first mechanism of ENSO’s influence. 
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The stronger El Niño signal should be arisen from the saltier, cooler sea water which 

was brought to Sumba mostly by the Indonesian Throughflow. Two reasons made the 

Indonesian Throughflow saltier during or after an El Niño: one is that less low-salinity 

Pacific water would be transport into the Indonesian seas during an El Niño [Meyers, 

1996; Susanto and Gordon, 2005]; the eastward moving of the Indonesian Low during 

an El Niño would greatly reduce the rainfall of the Indonesian archipelagos and areas 

around the South China Sea which are both the source of freshwater of the Indonesian 

seas [Gordon, 2005], and the dramatic reduction of the freshwater flux would then rise 

the salinity of the Indonesian Throughflow. The cooler SST in western Pacific and 

temperature in Indonesian archipelagos during an El Niño would also make the 

Indonesian Throughflow cooler than a normal or La Niña year. The third mechanism of 

ENSO’s influence involves modulating of the IOD, which would be detailed in the 

following sections, as during ENSO the weakened Pacific trades are often accompanied 

by easterly wind anomalies along the Indian Ocean equator [Clarke and Liu, 1994]  

and the resulted IOD has similar effect with ENSO. 
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Figure 6.22  The control of ENSO and the signatures of IOD on the Sumba coral 18O record. 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                          171 

The correlation between the Sumba summer coral 18O and the ENSO events is much 

weaker, but their connection is still recognizable (Fig. 6.22C): the obviously enriched 

18O in the summer following an El Niño event (Figure 6.6). We think the influence of 

ENSO on the summer climate and oceanography might involve modulation of the IOD, 

rather than a direct influence, since the summer coral 18O points to an overwhelming 

impact of IOD, and the IOD itself is influenced by ENSO [Yu and Lau, 2004b]. 

6.4.3  Signature of the Indian Ocean Dipole events 

Even though ENSO events control the interannual variability of the winter coral 18O 

record, the influence of Indian Ocean Dipole events in winter is still obvious. The most 

conspicuous example is the peak of remarkably enriched 18O in 1967, when there was 

no El Niño (Figure 6.21). But this peak coincided with a positive departure of Indian 

Ocean Dipole Mode Index (DMI) [Saji et al., 1999]. In fact, coincidence of enhanced or 

reduced winter 18O superimposed on the ENSO effect is very common in this Sumba 

coral 18O (Figure 6.21 and Figure 6.22). A positive index of DMI would enhance the 

effect of an El Niño, such as evidently enhanced winter peaks in El Niño years of 1994, 

1976, 1979, and 1963; and a positive index of DMI would reduce the effect of a La 

Niña, as a matter of fact, it happened in all the three years when a positive DMI index 

coincided with a negative NINO3.4 index in 1976, 1970, 1971. In contrast, a negative 

DMI index would enhance the effect of a La Niña event on Sumba coral 18O, such as 

that in 1989, 1996, 1998, 1968, 1978, 1981, and 1984; also, a negative DMI index 

would reduce the effect of an El Niño, such as that in 1965 and 1990. Strong correlation 

suggests that the IOD events could strongly impact the climate and oceanography as far 

as in the Savu Sea and in some year this influence is even stronger than an ENSO 

events’ influence in this region. Our result support that an positive IOD event bring the 

same influence in Indonesia maritime continent as that of an El Niño event and a 

negative IOD event bring the same influence in Indonesia as that of a La Niña event 

[Abram et al., 2003; Saji and Yamagata, 2003]. 
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Not only does IOD have impressive signature in the winter coral 18O, but also 

overwhelming influence on the summer coral 18O, as indicated by the spectral analysis 

of the seasonal characteristics of this coral 18O in Section 6.4.1. As a matter of fact, the 

overwhelming impact of IOD in summer mainly refers to part of its forcings: some 

intrinsic processes which have a 3 yr component of periodicity. The following Section 

6.4.4 would discuss the forcing in more detail.  

6.4.4  Routine penetration of the SJC into Savu Sea 

The Sumba Strait is one of the main exits of the Indonesian Throughflow (ITF) into the 

southeast Indian Ocean [Potemra et al., 2003; Sprintall et al., 2003; Gordon, 2005]. 

While early studies have noticed that the eastward flow of the South Java Current could 

reduce the transport of the ITF [Meyers et al., 1995], it had not been confirmed if the 

Indian Ocean water enter into the Indonesian seas through the Sumba Strait for a long 

time until the recently reported eastward flows in the Ombai Strait [Molcard et al., 

2001a] and in the Sumba Strait [Chong et al., 2000; Hautala et al., 2001] measured 

using current metres in December 1995. Our study area is just on the southern side of 

the inner part of the Sumba Strait (Figure 3.1), so it should be an ideal site to research 

the transport of waters between the Indonesian inner seas and the Indian Ocean. The 

Porites corals in this site could provide longer historical record of the transport by 

reflection of the variability of salinities and sea water temperatures for the different 

waters. 

As mentioned above, the Sumba coral 18O has recorded a huge input of fresh water in 

this area in March to early May, and this water is warm, low-salinity, and strongly 

related to outside summer monsoonal rainfall. Obviously, there are two possible sources 

for this water. One is from the Indonesian inner seas mainly through the Ombai Strait in 

the east of the Savu Sea, and the other one is from Indian Ocean through the Sumba 

Strait in the west of the Savu Sea. There is no evidence to support this Indonesian inner 

seas source in the Sumba coral record. In contrast, there are at least three lines of 
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evidence in the Sumba coral 18O record to support an Indian Ocean low-salinity water 

source. 

(1) Spectral analysis (Figure 6.20) indicates that the interannual variability of the 

autumn coral 18O has a very strong periodicity of 3.1 years in addition to the strong 

monsoonal periodicity of 2.7 years. Even though IOD events are strongly connected to 

the ENSO events, there were some years when IOD occurred with nothing to do with 

ENSO events, such as shown by the Sumba coral 18O that the strong 1967 winter 

enriched 18O peak occurred in a weak La Niña year rather than a El Niño year. Recent 

studies have indicated that only about one-third of the IOD events are related to the 

ENSO forcing [Yamagata et al., 2004; Behera et al., 2006] and modelling experiments 

support that the IOD is mainly determined by the intrinsic processes within the Indian 

Ocean basin [Yamagata et al., 2004; Behera et al., 2006]. Our spectral analysis also 

shows the unique component of 3.1 years in the periodicity of the IOD interannual 

variability (Figure 6.22A) in addition that the periodicity of IOD shows strong 

connection with ENSO in the concurrent 5 and 3.6 year components. This 3.1 year 

component should be a unique marker for some intrinsic processes within the Indian 

Ocean. 

(2) The property of the water of the outside source inflow during autumn recorded by 

the shallow-water Sumba Porites coral 18O is very fresh and warm, consistent very 

well with the published data for the surface layer of the South Java Current which has a 

very warm, fresh cap (salinities ~33.8) [Fieux et al., 1994; Bray et al., 1997; Sprintall et 

al., 1999; Sprintall et al., 2000] and is believed to result from the heavy input of strong 

summer rainfall around Java and Sumatra because it is too fresh to come from the 

Indonesian inner sea Banda Sea Water (salinities ~34.4) [Fieux et al., 1994; Sprintall et 

al., 1999]. This current seasonally flows eastward in summer during December to April 

driven by the prevailing north-westerly monsoonal winds [Quadfasel and Cresswell, 

1992; Sprintall et al., 1999]. Hautala et al. have observed strong eastward flow in the 

upper layer of 0 to 150 m during December 1995 in the Sumba Strait using pressure 
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gauge pairs [Hautala et al., 2001], showing that the warm, fresh water in the upper layer 

of the South Java Current could inflow into the Savu Sea through the Sumba Strait. 

Molcard et al. also caught a strong north-eastward current in the surface 160 m during 

the whole December 2005, indicating the SIC could further enter into the Indonesian 

inner sea the Banda Sea [Molcard et al., 2001a]. 

(3) Analysis of the interannual variability of the seasonal characteristics of the coral 

18O demonstrates that the distinct freshening in the Savu Sea in autumn reflected by 

the coral 18O climatology (the “hunch”) should result from input of water from the 

South Java Current rather than the Indonesian inner seas. At first we analyse the case in 

1993 when a prolonged El Niño occurred (Figure 6.9F). Even though a negative IOD 

happened in most part of the 1993 summer, the local rainfall in both early and autumn 

was in a relatively low level (Figure 6.9B and C) and the rainfall around the Indonesian 

maritime continent should be also relatively lower compared with a normal or La Niña 

period. Since in such an El Niño year the ITF from the Pacific should be smaller than a 

normal year or a La Niña year [Clarke and Liu, 1994; Meyers, 1996], therefore the inner 

seas should be much saline. If the water is the main source of the inflow into the Savu 

Sea in the later summer, the Sumba coral should record a much enriched value of 18O 

in autumn given that the Indonesian inner sea water arrives in the Sumba Strait in 

around 3 months [Potemra et al., 2003]. But, actually, the Sumba coral recorded a 

remarkably depleted 18O peak in late 1993 summer (Figures 6.9A and C). So, the 

distinct freshening of water recorded by the coral 18O in 1993 autumn shows the 

occurrence of other source for the very warm and fresh water into the Savu Sea. The 

only candidate left is the characteristic fresh cap of the South Java Current from the 

Indian Ocean. Even a negative IOD event in early 1983 a little bit complicated the 1983 

case, the 1983 distinct freshening in autumn also supports a SJC source. 1988 autumn 

should be in a neutral condition for the rainfall around the Indonesian maritime 

continent (refer to Figure 6.21 the SOI), but still the coral 18O recorded a distinct 

freshening (Figure 6.21A, D and E). It also proves that the source of the autumn 

“hunch” is from the SJC rather than the Indonesian seas. 1996 could serve as an 
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example for a La Niña year. The summer monsoon rainfall was very strong in this year 

(Figure 6.9E). If the source of the autumn “hunch” is the inflow of the Indonesian inner 

sea water, there should be a huge “hunch” compared with the summer coral 18O, 

because in a La Niña year the rainfall around Indonesia (record shows a very high 

rainfall during the summer rainfall peak time, Figure 6.9B and E) and the ITF both 

should increase, and the salinity in the Indonesian seas should greatly decrease. But 

what happened is, the coral recorded no “hunch” at all compared to the summer (Figure 

6.9A, D and E). This example indicates that even in a La Niña year when the ITF is 

believed to be larger than normal and the rainfall around Indonesia is very heavy, the 

Sumba coral does not record a autumn “hunch” in 18O, indicating that the “hunch” in 

the Sumba coral 18O did not result from the input of inner Indonesian sea water.  

Therefore, the Sumba coral 18O record has clearly demonstrated an input of Indian 

Ocean water into the Savu Sea during the autumn. The high resolution Sumba coral 

18O record also shows that the SJC could flow into the Savu Sea in other period of 

summer time (November to May). The periodic eastward flowing during November to 

May [Quadfasel and Cresswell, 1992] has provided the possibility for the penetration of 

the SJC through the Sumba Strait during the whole summer time. Spectral analysis for 

the Sumba coral 18O has proven that both the interannual variabilities of the property 

for the Savu Sea water in the whole summer and the summer are mainly controlled by 

an intrinsic process within the Indian Ocean basin (the 3.1 yr period), strongly implying 

an important input of Indian Ocean water for the whole summer, not only the autumn. 

The seasonal characteristics of the coral 18O in 1996 and 1997 clearly support that 

during La Niña (both the 1996 and 1997 summer time were during La Niña conditions 

as showing in Figure 6.9F) the SJC still flew into the Savu Sea in early part of the 

summers such as in November 1995 through February 1996 and November and 

December in 1996. But since the increased pressure difference between the Pacific and 

the Indian Ocean during a La Niña increases the ITF [Clarke and Liu, 1994; Meyers, 

1996], increased Indonesian sea water into the Savu Sea occurred and decreased the 

salinity and SST in the Sumba Strait, reflected by dramatic increase in coral 18O in 
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March and April of 1996 and during January to March of 1997 (Figure 6.9A, and for a 

more detailed presentation, refer to Figure 6.18). These dramatic increases in coral 18O 

could imply westward flows during those times. But in both years, rapid reversals of the 

direction for the flow in the Sumba Strait have been shown by dramatic depleted 18O 

peak in May 1996 and May 1997. These two examples also show that even heavier 

rainfall and greater ITF could not make the Indonesian inner sea water fresh enough for 

the distinct freshening during autumn and some other time in summer. So all the 

remarkable depleted coral 18O peaks could be attributed to input of Indian Ocean water 

into the Savu Sea. Therefore the Sumba coral 18O record shows that during the 

following years there should be strong penetration of the SJC water through the Sumba 

Strait and into the Savu Sea during 1962-1998 even before the rainfall record starting in 

1980 (Figure 6.21 and 6.18): the autumns (late March to June) of 1981, 1967, 1968, 

1971, 1972, 1976, 1977, 1978, 1979, 1981, 1982, 1983, 1987, 1988, 1989, 1991, 1993, 

1996, and 1997; the summers of 1965, 1990, 1991, 1996, 1997 (please note: the 

“summer of a year” in this thesis refers to November and December of the previous year 

and the January and February of this year). As shown in Figure 6.21, there were also 

many years when the input from the SJC seems to have happened but was not as strong 

as the above-mentioned years. So it could be concluded that the inflow of the Indian 

water into the Savu Sea is very common during summer time and happens in most of 

years; heavy inflow happens mainly in April and May and the inflow in summer in 

November and December happens but not as frequently and strongly as in autumn. 

There are also some years when the inflow did not happen or happened weakly, such as 

in summers of 1964, 1966, 1969, 1970, 1980, 1984, 1985, 1986, 1992, 1994, 1995. 

By comparing this coral 18O record with the only available instrumental time series for 

the surface velocity fluctuation inferred by pressure difference across the strait [Chong 

et al., 2000] during the period December 1995 to April 1998 (Figure 6.23), we conclude 

that Sumba coral 18O faithfully reflects fluctuations in the direction and source of the 

surface flows in the Sumba Strait during summer (November to May or June). Not only 

have the corals recorded the major eastward currents during summer/autumn, it is very 
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sensitive to major westward currents.  Most of the changes in current direction and 

intensity could be reflected in this high-resolution Sumba coral 18O record, not only in 

summer, but also in winter. 
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Figure 6.23 High-resolution Sumba coral 18O records the oceanic currents entering into or flowing out of the 

Savu Sea through the Sumba Strait. Shaded areas represent austral winter with lower sea surface temperature during 

June through October. Lower panel (red curve) is the overlapping part of the fortnightly 18O of coral RSM2b until 

November 1998. Upper panel (black curve) is the cross-strait geostrophic surface velocity (unsmoothed hourly data) 

for Sumba Strait during December 1995 to May 1999 monitored by the pressure gauge array [Chong et al., 2000]. 

The velocity data were kindly provided by J. Sprintall. Note the negative values in velocity indicate flow into the 

Indian Ocean, while the positive values indicate flow of warmer, fresher surface water [Bray et al., 1997; Sprintall et 

al., 1999] into the Savu Sea. The coral 18O would be more depleted in 18O when the ambient surface sea water is 

warmer and fresher. The pink arrows show some of the major events of eastward flow of the warmer, fresher water 

into the Savu Sea reflected by the coral 18O. 

The timings and the periods of lasting of the distinctly depleted coral 18O peaks 

suggest that they are mostly likely associated with the semiannual passage of the 

downwelling coastal Kelvin waves through the Savu Sea. The Kelvin waves are due to 
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westerly wind forcing in the remote equatorial Indian Ocean during the semiannual 

April/May and October/November monsoon transition periods [Clarke and Liu, 1993; 

1994]. Spectral analysis has shown that both the interannual variabilities for late and 

summer coral 18O have a 3.1 yr periodicity linked with the tropical Indian Ocean winds 

[Wijffels and Meyers, 2004]. Recently Syamsudin et al. recognized Kelvin wave activity 

along the Lesser Sunda Islands during 1993 to 1998 according to the sea surface height 

anomaly data [Syamsudin et al., 2004, Figure 3a] and our coral 18O result is consistent 

with it very well in that there is no Kelvin wave during the whole 1994 and 1995 and 

the summer in 1998 (in fact, November and December of 1997), and all the 5 Kelvin 

waves recognized by them could be found in our coral 18O record (numbered green 

arrows in Figure 6.18). Chong et al. also reported a distinct semiannual frequency for 

the surface velocity during December 1995 to April 1998 in the Sumba Strait measured 

by pressure gauges and showed the speed of eastward propagation of this wave from 

Bali to the Ombai Strait was 2.5 m/s, commensurate with linear wave theory [Chong et 

al., 2000, Figure 2]. Strong eastward currents in upper 150 m surface water in 

December 1995 have been unambiguously measured in the Sumba Strait using pressure 

gauges [Hautala et al., 2001] and in the Ombai Strait using current metres [Molcard et 

al., 2001a]. Sprintall et al. have detected strong remote forced Indian Ocean Kelvin 

wave passing through Lombok Strait and intruding into Makassar Strait in May 1997 by 

a suite of contemporaneous measurements. Wijffels and Meyers’ also recently 

concluded that the Kelvin energy can jump into the Savu Sea based on temperature and 

sea level analysis since 1983 within the Indonesian seas and southeast Indian Ocean 

[Wijffels and Meyers, 2004]. Even though majority of the incoming Kelvin wave energy 

is supposed to enter into the Lombok Strait [Syamsudin et al., 2004], our Sumba coral 

18O record shows that in most of the years during 1962 to 1998 the coastal trapped 

Kelvin wave continued to propagate eastward along the Lesser Sunda Islands and 

penetrated through the Sumba Strait, indicative of the remote forced coastal 

downwelling Kelvin wave entering into the Savu Sea as a routine phenomenon. 

The Sumba coral 18O seems to show that the penetration of the semiannual Kelvin 
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wave into the Savu Sea happens much more frequent in austral autumn (March to June) 

than that in austral summer (November and December). That may be partly because that 

the eastward Wyrtki Jet in the tropical Indian Ocean associated with the Kelvin wave is 

weaker during the October/November transition period when the Somali Jet in the 

Arabian Sea appropriates some of the South Equatorial Current (SEC) [Wyrtki, 1973]. 

More possibly, this penetration still happens during November or December in many of 

the years, but the intensity is much weaker. Two reasons could make the coral record a 

weaker penetration than it is in the summer: (1) the penetration only happens in the 

north side of the Sumba Strait due to a weaker Kelvin wave (it is possible because partly 

eastward flows in the strait have been observed in March 1997 and March 1998 

[Hautala et al., 2001] and the effect on the ambient water of the coral in the south side 

of the strait is much less both in temperature and salinity; (2) The salinity of the South 

Java Current in summer is possibly not as low as that in autumn because it is before the 

summer rainfall peak time (Sprintall et al. observed a obvious freshening of the SJC 

when a autumn Kelvin wave arrived showing the salinity of the SJC water before the 

arrival of the autumn Kelvin wave is lower [Sprintall et al., 2000]) and it would not 

bring on a distinct depleted peak in coral 18O as that in autumn. The much weaker 

monsoon periodicity component (2.7 yr) in the summer coral 18O’s interannual 

variability than in the autumn also support that the salinity of the inflow in summer 

might not be as low as that in autumn. The strong 3.1 yr periodicity strongly suggests 

that the summer input of the Kelvin wave. 

The Kelvin waves during the monsoon transitions appear not to be the only source for 

the inflow of the Indian Ocean into the Savu Sea during the austral summer time 

(November to May). These Kelvin wave only last for around one month, but distinct 

freshening during summers of 1996 and 1997 recorded by the Sumba coral 18O were 

much longer than 1 month, showing input of the SJC during summer time other than the 

Kelvin wave periods. It is very reasonable that the lasting eastward flowing of the SJC 

during the northwest monsoon season from November through April could penetrate the 

Sumba Strait into the Savu Sea when condition is favourable. For example, weak 
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eastward subsurface flow have been found in the north side of the Sumba Strait during 

March 1997 and 1998 [Hautala et al., 2001] even though the south side Sumba coral 

recorded westward Indonesian inner sea water in March 1997 and a distinct freshening 

possibly resulting from eastward input of SJC in March 1998 when there was no remote 

forced Kelvin wave [Chong et al., 2000; Sprintall et al., 2000; Syamsudin et al., 2004]. 

Even though there was no obvious eastward Kelvin wave in November or December 

1993 (see this Sumba coral 18O record and [Syamsudin et al., 2004], three of five 

surface drifters deployed in the central Indo-Australian Basin in November moved 

north-eastward into the Savu Sea in the following 4 months, clearly indicating the 

occurrence of eastward flowing of the SJC in the austral summer time without the 

remote forced Kelvin wave. Decrease in rainfall when a positive IOD or El Niño event 

occurs would reduce the salinity of the SJC and then blur the input signal of the SJC 

into the Savu Sea in some extent, the enriched coral 18O in summers of 1992, 1994, 

and 1995 demonstrates this possibility. 

The Sumba coral 18O have shown strong interannual variability for the inflow of the 

Indian Ocean water into the Savu Sea during the austral summer. Even though the 

ENSO influences this interannual variability, certain process intrinsic within the Indian 

Ocean dominantly controls this variability of input. The autumn remote forced Kelvin 

seems to have remarkable impact for the ITF, even though the Kelvin wave only 

influences the surface current of the SJC. Model experiences have shown that most of 

the ITF transport through the outflow straits occurs in the upper 100 m [Potemra et al., 

2002; Potemra et al., 2003]. The transport minimum through the Ombai Strait during 

December 1995 through November 1996 coincides with the intrusion of the Kelvin 

wave in May [Molcard et al., 2001a]. The eastward transport maximum in the SJC 

transport climatology [Meyers et al., 1995] coincides with the distinct freshening of the 

Savu Sea in the Sumba coral 18O climatology which has been attributed to the 

penetration of the autumn Kelvin wave into the Savu Sea during late March to May. 

Therefore the tropical Indian Ocean wind seems to have significantly influenced the 

transport through the Savu Sea which is one of most important exits of the ITF. 
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6.4.5  Strong impact of the Asian-Australian monsoon 

The annual climatology analysis of the coral 18O has demonstrated an outside source of 

fresh water. Furthermore, spectral analysis of seasonal 18O and the correlation between 

seasonal rainfall and the seasonal coral 18O confirmed the monsoonal rainfall source of 

the freshwater, indicative of strong impact of monsoon on the autumn coral 18O record. 

In addition, the monsoon also has remarkable signature in the spectrum of winter coral 

18O record, showing obvious impact of monsoon on winter climate and oceanography 

in the Sumba Strait. 

The Sumba coral 13C record has also shown the strong impression of the heavy 

summer rainfall which contributed to the depleted peak of the annual minimum of the 

coral 13C by bringing along abundant terrigenous nutrients in summer rainfall peak 

time. The unique density rhythm of the Sumba coral shows that the summer low-density 

bands is strongly attributed to the strong rainfall and so is the big rate of annual 

extension of the coral. 

In sum, the Sumba coral recorded strong influence of the Asian-Australian monsoon 

system in this area. 

6.5  CONCLUSIONS 

This study demonstrates that the Sumba modern corals are excellent recorders of 

modern climate and oceanography in the Indo-Pacific warm pool. High-resolution 

(fortnightly) time series, stacked annual climatology, and seasonal means have been 

characterised for both the modern coral 18O and 13C. Detailed correlation and spectral 

analysis of these features with local instrumental records, and main climate system 

indexes such as NINO3.4 index, All India Summer monsoon rainfall, and the Dipole 

Mode Index have been conducted. Blackman-Tukey spectra of annual and seasonal 

coral 18O and 13C characteristics and their cross-spectra with the above-mentioned 
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climate system indexes have also been carried out. These correlations demonstrate that 

the ENSO, Asian-Australian monsoon, and remote equatorial Indian Ocean forcing all 

have strong influence on the local climate and oceanography and the high-resolution 

coral 18O record from Sumba, Indonesia could disassemble the entangled climate 

system signals in an encouraging scale and helps in understanding the climate and 

oceanography in this area. The Sumba coral 18O record shows the dominating control 

of ENSO in austral winter and the interannual variability of the winter 18O could serve 

as a good index for ENSO events. In austral summer and autumn (November through 

May), the coral 18O is overwhelmingly controlled by the tropical Indian Ocean forcing 

agents and the monsoon. 

The high-resolution Sumba modern Porites coral 18O provides evidence for the routine 

penetration of the South Java Current (SJC) in austral summer and remote forced 

equatorial Indian Ocean Kelvin wave in autumn into the Savu Sea, which results in 

distinct freshening of the surface ocean during the austral autumn. By sensitively 

recording variability of sea surface temperature and salinity in this important exit of the 

Indonesian Throughflow (ITF), the Sumba coral 18O revealed active oceanic current 

activity in Sumba Strait. In austral winter, westward currents generally flow in the 

Sumba Strait and the ITF brings Pacific source-water with moderate salinity. In summer, 

the more saline SJC enters the Savu Sea from the west until around March. After March, 

two causes gradually lower the seawater salinity: the gradual weakening of the eastward 

SJC owing to the weakening of northwest monsoon winds, and the arrival of a remotely 

forced Kelvin wave with very warm and fresh water during April-July. Input of Indian 

Ocean water into the Savu Sea by the summer SJC and autumn Kelvin wave could have 

significantly influenced the transport of the Indonesian Throughflow.  

The Sumba 13C shows clear annual cycles and recorded a distinct depletion in 13C 

during the austral summer time (December to March). Our result shows it results from 

the large input of terrigenous nutrients linked to local heavy summer monsoonal rainfall. 

A consistent annual maximum during early October in the coral 13C is supposed to be 
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linked with the maximum of the local incoming short-wave radiation. 

Unique density banding in the Sumba modern coral is presented. There are two 

high-density bands and two low-density bands in a certain year. Detailed study on the 

banding and correlation with the high-resolution 13C record indicate that the unique 

low-density band in summer resulted from the largely increased availability of 

terrigenous nutrients connected to the heavy rainfall during the north-west monsoon 

season. Unlike the coral 13C, during off-rainfall season the coral density banding is 

more related to the ambient seawater temperature, rather than the local incoming 

short-wave radiation. 

Long-term trends have been shown in both the coral 18O and 13C records. The 

increased global warming has been attributed to the 18O trend and both the warming 

and the oceanic Suess effect have been attributed to the long-term trend of depletion in 

13C. Substantial decadal variability has been found in both the coral 18O and 13C 

records, and they are usually linked with the change in background climate and 

oceanography. Variation in input of warm, low-salinity water from the SJC into the 

Savu Sea in decadal time scale would also add to the decadal variability of the coral 

18O, such as that in the early 1990s. Large decadal variations in sea surface 

temperature and salinity in the Savu Sea have been proposed and the variability is 

supposed up to 0.3℃ and 0.5 ups. Salinity variability in the Savu Sea during 1962 to 

1998 has been reconstructed and a remarkable increase in 1974 to 1989 and rapid 

recover in 1989-1998 has been identified. 

The annual climatology of coral 18O and 13C is a very effective means to simplify and 

recognize the forcing agents for the variability of the records, especially in an area like 

Indonesia with entangled multi-systems of climate and oceanography. 
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CHAPTER 7 

CORAL EVIDENCE FOR VARIATION IN MONSOON, ENSO, AND 

EQUATORIAL INDIAN OCEAN FORCING 

SINCE THE MID-HOLOCENE 
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ABSTRACT 

High-resolution Holocene coral 18O and 13C records have been extracted from 4 

Porites corals in Sumba Strait, Indonesia, where the Asian-Australian monsoon, El 

Niño-Southern Oscillation (ENSO), and the remote equatorial Indian Ocean forcing 

have strong impacts on the local climate and oceanography. Both coral 18O and 13C 

climatology have been reconstructed, and magnitude and periodicity of the interannual 

variability of the coral records have been achieved. Strong seasonal variation in the 

association between the Sumba coral records and the three prevailing climate 

phenomena has been found, which helps to partly disentangle the three intertwisted 

climate systems and makes it possible to reveal the variation in the individual climate 

systems since mid-Holocene. Both the coral 18O and 13C register a weakening 

monsoon from 5.7 ka to the present. Fortnightly resolution coral 18O records for 

windows since 5.7 ka illustrate climate scenes distinct from the modern time in the 

relative intensity and variability of the three climate components in one specific location: 

at 4.8 ka both the El Niño and summer monsoon were strong and the remote equatorial 

Indian Ocean forcing was weak; at 3.7 ka ENSO was weak, the monsoon was stronger 

than at present, a dominant forcing from the remote equatorial Indian Ocean might have 

caused strong IOD events. These results provide a historical perspective for the 

understanding of the physical processes and interplay of the three intertwisted climate 

phenomena.  
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7.1   INTRODUCTION 

The Asian-Australian monsoon is the largest atmospheric circulation system in the 

world, straddling two continents of the Asian and Australia and two ocean basins of the 

Indian and Pacific Oceans. Extremes in the interannual variability of the monsoon 

rainfall result in devastating floods and droughts leading to enormous economic loss 

and human misery [Webster et al., 1998]. Therefore, understanding of the physical 

processes responsible for the observed interannual variability of the monsoon is crucial 

for advancing the capability of predicting the interannual variability. Previous studies 

have demonstrated that the coupled atmosphere-ocean mode of ENSO in the Pacific 

basin is one of the most important factors influencing the interannual variability 

[Rasmusson and Carpenter, 1983; Shukla and Paolino, 1983; Holland, 1986; Meehl, 

1987; Webster and Yang, 1992]. A recently identified coupled atmospheric-ocean mode 

of the Indian Ocean Dipole (IOD) in the Indian Ocean basin  [Saji et al., 1999; Webster 

et al., 1999] has also been suggested to impact the monsoon in interannual time scale 

[Guan and Yamagata, 2003; Li et al., 2003; Loschnigg et al., 2003; Saji and Yamagata, 

2003; Ashok et al., 2004]. 

As a matter of fact, not only the ENSO and IOD influence the monsoon, but also the 

three climate phenomena interplay with each other, such as the impact of the monsoon 

to ENSO [Yasunari, 1990; Chung and Nigam, 1999; Kirtman and Shukla, 2000], and 

the interaction between IOD and ENSO [Saji et al., 1999; Baquero-Bernal et al., 2002; 

Behera and Yamagata, 2003; Hastenrath, 2003; Loschnigg et al., 2003; Yamagata et al., 

2004; Yu and Lau, 2004; Behera et al., 2006]. Owing to the complication of the three 

intertwisted climate systems, many controversial theories have been argued about the 

physical processes and their interplays. Part of the reason is that most of the studies of 

observation or modelling are based on time-limited instrumental records and sporadic 

historical documents. In order to achieve further understanding for the complicated 

climate phenomena which are all of global influence, more historical records should be 
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dug out especially those with high-resolution and under distinctly different climate 

conditions. 

Here we apply fortnightly-resolved coral 18O and 13C records to reconstruct the 

intensity and variability of the monsoon, ENSO, and IOD in 4 Holocene periods of 5.7, 

4.8, 3.7, and 0 ka. Modern and fossil coral 18O has successfully been applied to 

demonstrate the variability of the ENSO [e.g. Cole et al., 1993; Dunbar et al., 1994; 

Fairbanks et al., 1997; Hughen et al., 1999a; Urban et al., 2000; Tudhope et al., 2001; 

Cobb et al., 2003], the monsoon [e.g. Charles et al., 1997; Sun et al., 2005], and the 

Indian Ocean Dipole[Abram et al., 2003; Abram et al., 2007]. Furthermore, the corals 

are from the Sumba Strait, Indonesia, especially well situated for exploring the activity 

of the three climate phenomena because all of the three phenomena prevail there. 

The Sumba Strait is located in the pathway of the annual migration of the 

Asian-Australian monsoon convective centre from over the South Asian subcontinent to 

over the Australian continent, so this region is subject to seasonally reversing monsoon 

winds that are from the northeast in austral winter (April through November) and from 

the northwest in austral summer (December through March) with strong rainfall during 

the summer monsoon. The Maritime Continent is between the Pacific and the Indian 

Ocean and is thought of as the intersection of two remote equatorial wave guides of 

both oceans [Wijffels and Meyers, 2004]. The ENSO of the tropical Pacific has been 

demonstrated to have strong influence in the rainfall and sea surface temperature (SST) 

of the Indonesian region [Nicholls, 1984; Ropelewski and Halpert, 1996; McBride et al., 

2003], and the IOD has also been shown to impact the rainfall and the SST of this 

region [Saji et al., 1999; Abram et al., 2003]. Since the Sumba Strait is one of the most 

important passage of the Indonesian Throughflow [Gordon, 2005], the Indonesian 

Throughflow water that exits the Sumba Strait also carries both ENSO and IOD signals 

in temperature and salinity which are integrated into the water in the inner Indonesian 

seas. Recent studies also demonstrate that the coastal Kelvin wave forced by the remote 

equatorial Indian Ocean winds has penetrated the Sumba Strait [Hautala et al., 2001; 
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Molcard et al., 2001] and the interannual variability of the Indian Ocean coastal region 

along the Indonesian archipelago has dominating origin of remote equatorial Indian 

Ocean forcing and the IOD events [McClean et al., 2005]. Taken together, the Sumba 

coral should be a very good target for exploring the evolution and interplay of the 

complicatedly intertwisted monsoon, ENSO, and the equatorial Indian Ocean forcing. 

7.2   MATERIALS AND METHODS 

7.2.1 Coral sampling and isotopic analysis 

A 1.12 m long core (MS7) of 75 mm diameter was collected from a Porites at Mutiara 

Site (9°28.886'S, 120°08.513'E，Figure 5.1) in 1998. The top of the near-spherical 

colony (1.3 m diameter) was just below the spring low-tide level. Two shorter Porites 

cores of 50 mm diameter were drilled in 1995: coral RS5b from River Site is well 

exposed on the Holocene reef flat during low tide and coral BS3a from Bridge Site 

(~200 m seaward of the beach) is exposed in a creek-bed (Figure 5.1). 37 and 11 

year-long records for two local modern corals (RSM2b and SU1) are used in this study 

as baseline coral records of the climate and oceanography (details in Chapter 6). 

The cores were slabbed and X-ray photographed as a guide for sub-sampling transects 

along the axis of maximum growth. Even though this MS7 core is much denser than the 

modern core RSM2b and the annual density banding is much less clear, annual growth 

cycles could still be identified by clear fluorescent banding under UV light. 

Sub-sampling followed the procedure developed by Gagan et al. [1994; 1998] and the 

interval for every sub-sample is 0.6 mm, which is slightly more than fortnightly 

resolution. 

Oxygen and carbon isotope analyses were obtained by reacting ~200 μg aragonite 

samples with two drops of 103% H3PO4 at 90°C for 12 minutes in an automated 

individual-carbonate reaction (Kiel) device coupled with a Finnigan MAT-251 mass 

spectrometer at ANU. The isotope ratios are reported in standard delta notation relative 
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to Vienna Peedee Belemnite (VPDB) and calibrated via the NBS-19 calcite standard 

(18O = -2.20‰, 13C = 1.95‰) and the NBS-18 calcite standard (18O = -23.0‰, 13C 

= -5.0‰). The analysis precision (±2) were 0.09‰ (18O) and 0.04‰ (13C) for 

NBS-19 (n = 238). 

For 18O and 13C measurement of the coral MS7, firstly every second sub-sample was 

measured, which equals monthly in resolution. Then neighbouring sub-samples were 

added for periods when skeletal isotopic composition changed rapidly, especially during 

austral winters, resulting in fortnightly resolution. 1125 sub-samples were measured and 

57.5 years of records have been recovered for coral MS7, with average sampling 

frequency of isotope analysis of 20 samples per year, slightly less than fortnightly 

resolution.  

The sample preparation and isotope measurement for RS5b and BS3a were carried out 

by Heather Scott-Gagan applying the same procedure and methodology as that of MS7 

at the same laboratories at ANU. 

7.2.2 Age determination and chronology 

3 fossil Porites corals were uranium-series dated using thermal ionisation mass 

spectrometer at the Laboratoire des Sciences du Climat et de l’Environnement, 

Gif-sur-Yvette Cedex, France by Linda Ayliffe. The results are shown in Table 7.1. 

Table 7.1 
U-Th dating analysis for Sumba Holocene corals  

Sample U (ppm) (230/238)act 234U(t) 234U(initial) (230/232)act Age (cal. yr)  

MS7 2.5285 0.0388 148.8 150.4±2.3 373±5 3732±42 

RS5b 2.9130 0.0496 149.7 151.8±2.5 2199±23 4791±40 

BS3c 2.8430 0.0586 143.4 145.8±2.3 797.±4 5713±46 

58 years of 18O and 13C records have been recovered from the MS7 coral core (3.7 ka 

by U-Th dating). Two shorter records have been obtained from RS5b and BS3a (4.8 ka 
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and 5.7 ka by U-Th dating) and span 21 years and 4 years, respectively. The annual 

cycles were assigned by cross-checking the annual density bands counted from the 

X-ray positive image or fluorescent banding under UV light against the annual 18O 

cycles. 

A detailed chronology was established assuming that the annual arrival-time of the 

winter SST minimum in the Holocene was the same as today in Sumba, which is 

supported by the fact that the seasonal minimum of solar radiation occurred at the same 

time of the year for all the periods of this study (Figure 7.7). Analysis of SST records 

[IGOSS, Reynolds et al., 2002] for 1982 to 2005 indicates that winter SST minima at 

Sumba (1o 
× 1

o
 grid centred at 120.5o 

E, 9.5
o 
S) arrive near 8 August (±32 day, 2n 

). This annual arrival-time of the winter SST minimum is assigned to each coral 

18O annual maximum, and then equal time spans are allocated to the data points 

between adjacent 18O maxima by integration interpolation using Analyseries [Paillard 

et al., 1996]. Like the modern records, 26 equal intervals were assigned between two 

neighbouring winter 18O maxima for all the Holocene records. The fortnightly 

resolution of the chronology is close to the measurement resolution. 

7.2.3 Assessment of diagenetic alteration 

A full suite of diagenetic screening techniques have been applied to ensure the veracity 

of the paleoclimate reconstruction from skeletal geochemical records of Holocene coral 

MS7. The core top is discoloured and the top 10 cm has not been used for any further 

geochemical analysis. There was no calcite observed under UV light for the whole MS7 

core, and X-ray diffraction (XRD) results confirmed that the MS7 core contains no 

significant calcite. The X-radiograph of the 7-mm thick slab of the core (Figure A.2 in 

Appendix E), however, revealed that the lowermost part of the core contained a 10-cm 

section with physical evidence of alteration showing increased skeletal density. Visual 

inspection of the petrographic thin-sections and scanning electron microscopy (SEM) 

images (Figure A.3 in Appendix E) confirmed the excellent preservation of most part of 
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the core and revealed that the physical alteration on the lowermost 10 cm resulted from 

presence of secondary abiotic aragonite. 

A 65 mm by 25 mm petrographic thin-section paralleling the geochemical sub-sampling 

transection C was employed to assess the diagenetic alteration of the geochemical data 

in this coral (refer to Appendix E for details). The result of detailed comparison between 

coral 18O and the petrographic images (see Appendix E) indicates that only the first 

two annual cycles of the 18O and 13C have undergone diagenetic alteration. The 

altered part in the first two annual cycles in the Holocene coral MS7 will not be used in 

the further study. Similar assessment has been conducted for BS3a and RS5b, and the 

geochemical data used in this study are not diagenetically altered.  

Recent researches indicated that secondary aragonite occurred in early marine 

diagenesis would bring on significant shift toward higher coral 18O and 13C relative to 

pristine corals [Enmar et al., 2000; Muller et al., 2001; Muller et al., 2004; Gallup et al., 

2006; Quinn and Taylor, 2006], where replacement or addition of calcite involving meteoric 

water would negatively shift those geochemical indices [Stein et al., 1993; Zhu et al., 1994; 

Wei et al., 1998; McGregor and Gagan, 2003]. The result of the diagenesis assessment 

on the MS7 coral is largely consistent with those observations. The MS7 coral is most 

possibly restricted in marine environment in the past 3.7 thousand years given the stable 

uplift of about 0.49 m/kyr in the study area (Chapter 5), and only the basal part of the 

core experienced progressive addition and replacement of secondary aragonite. Even the 

amplitude of the change that secondary aragonite brings to coral 18O is comparable to 

those early observations. For example, recent result of Quin and Taylor [Quinn and 

Taylor, 2006] indicated that 20% of secondary aragonite could bring a shift of 0.5‰ 

higher 18O value, and this study displays a 0.25‰ shift in the first winter 18O with 

presence of 10% of secondary aragonite (between C and D in Appendix E, Figure E.4). 

Two new findings are noticeable from this study (refer to Appendix E for details). The 

first one is the clear annual cycles in altered coral 18O. This result shows that 
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progressive addition or replacement of secondary aragonite would still have a 

manifestation of annual cycle. The second one is that even subtle alteration in coral 

skeleton, such as presence of as low as less than 5% of secondary aragonite, could bring 

large shifts in interannual variability of coral proxies which have extensive application 

in recognition of important historical climate events, such as ENSO, and is the base for 

understanding their vicissitudes by spectral analysis. This result demonstrates that clear 

annual cycles and small shifts from “normal” values of coral proxy records do not 

ensure the pristine nature of the corals. Careful diagenesis screening should be 

performed before reconstructing paleoclimate using coral. And this study shows, even 

subtle diagenetic alteration in coral could be detected by combination of X-radiograph, 

petrographic observation, and analysis of interannual variability of coral proxies，and 

thereby the influence of diagenesis on coral reconstruction of paleoclimate and 

paleoceanography could be decreased to minimum. 

7.3  RESULTS 

7.3.1 Time series of Holocene coral 18O and 13C records 

Sumba corals display clear annual cycles both in 18O and 13C with average rates of 

annual extension as 18.5 (modern), 16.3 (3.7 ka), 16.2 (4.8 ka), and 14.9 mm/year (5.8 

ka), respectively. 

There fossil corals show striking similarity in mean 18O (-5.0‰), whereas the modern 

coral value is -5.4‰ (Figure 7.1). 13C also show big difference between modern and 

fossil corals (1.36 to 1.79‰, as shown in Figure 7.2).  

For the 18O records, two longer records (0 ka and 3.7 ka) exhibit evident long-term 

trends with different directions: the mean shifts between two ends are 0.18‰ and 

0.20‰ respectively. MS7 (3.7 ka coral) shows higher-frequency decadal variability than 

RSM2b (modern coral), but the amplitudes of the decadal variability is similar (0.15‰). 
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Figure 7.1  Time series of Holocene coral 18Os. Thin curves are fortnightly records and thin straight lines 

represent means. Heavy curves present decadal variability using 10-year smoothing with tricube weighing and 2 

degree polynomial regression. 
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Figure 7.2  Time series of Holocene coral 13Cs. Thin curves are fortnightly records and thin straight lines 

represent means. Heavy curves present decadal variability using 10-year smoothing with tricube weighing and 2 

degree polynomial regression. 
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For the 13C, only the modern coral records remarkable long-term trend (0.87‰ in shift) 

and substantial decadal variability (more than 1‰), while the 3.7 ka and 4.8 ka corals 

shows relative stability in terms of decadal variability. 

7.3.2 Coral climatology since mid-Holocene 

In order to understand the mean climate states and their seasonal and interannual 

variation in the studied Holocene windows, three longer coral records have been stacked 

to produce coral climatology (Figures 7.3A and 7.4A). Striking similarity among all the 

three Holocene corals both in 18O and 13C climatology demonstrates high quality of 

all the geochemical data used in this reconstruction study. 

18O climatology 

As shown in Figure 7.4A, the Sumba Holocene coral 18O records show similar 

seasonality. All three records have a narrow winter trough, a wide summer-autumn 

platform, and a clear autumn peak during March to May. However, dissimilarities are 

also evident: 

1. There is an extensive summer peak in 18O in the 4.8 ka coral record that has the 

same magnitude as the autumn peak. The 3.7 ka coral record also shows this peak at 

relatively low magnitude, whereas it disappears in the modern coral record. 

2. The modern coral record shows a much smaller autumn peak, relative to the 4.8 ka 

and 3.7 ka coral records. 

3. 18O seasonality for the 4.8 ka and 3.7 ka coral records is large, relative to the 

modern records: 0.40±0.04‰ (2SE) at 4.8 ka, 0.39±0.04‰ (2SE) at 3.7 ka, and 

0.35±0.04‰ (2SE) for the modern coral. 
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Figure 7.3  A: Fortnightly climatology of Holocene coral 18Os. Error bars represent standard errors of the 

means for individual data points. Inset is for more direct comparing: the 18O climatology was normalized relative to 

the winter maxima. B: Standard deviations for individual data points of the stacked climatology of the Holocene coral 

18Os, applied to compare the amplitude of variability in particular data points. Blue, green, and red points mark the 

amplitude of interannual variability of coral 18O in peaks and troughs that shape the mean coral climatology in 

austral winter (Late July to August), summer (around January), and autumn (April to May).
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Figure 7.4  A: Fortnightly climatology of Holocene coral 13Cs. Error bars represent standard errors of the 

means for individual data points. Inset is for more direct comparing: the 13C climatology was normalized relative to 

the maxima. B: Standard deviations for individual data points of the stacked climatology of the Holocene coral 13Cs, 

applied to compare the amplitude of variability in particular data points. Orange, green, and grey points mark the 

amplitude of variability of coral 13C in peaks and troughs that shape the mean coral climatology in austral spring 

(around October), summer (around January to February), and autumn (around May to June). 
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13C climatology 

The similarity of the Holocene 13C climatology (Figure 7.4) is surprisingly impressive 

because 13C in corals usually complicated by more environmental factors. The 13C 

climatology for all three Sumba Holocene corals is shaped by a trough in austral spring 

and two peaks in austral summer and autumn. The coral 13C records show some 

striking differences in the relative magnitudes of the two peaks with the highest summer 

peak occurring in the modern record, a moderate summer peak for the 4.7 ka record, and 

a lower summer peak than the autumn peak in the 3.7 ka records. There are significant 

differences in the amplitudes of the mean seasonality for coral 13C: 0.63±0.08‰ (2SE) 

at 4.8 ka, 0.46±0.08‰ (2SE) at 3.7 ka, and 1.00±0.16‰ (2SE) for the modern coral. 

7.3.3 Magnitude of 18O and 13C variability 

Figures 7.3B and 7.4B present standard deviations at individual data points of the 

fortnightly coral 18O and 13C mean climatology, applied to demonstrate the magnitude 

of variability of these 18Os and 13Cs. Two aspects of variation in the magnitude of 

variability should be noticed: one is the evident seasonal difference in the magnitudes of 

variability within a year for single coral record; another is the difference of seasonal 

changes among the 3 corals. For example, the variability of 18O in autumn is much 

smaller than that in summer and winter for the 4.8 ka coral RS5B; but the autumn 

variability for the 3.7 ka coral 18O is higher than that in summer and winter; while the 

modern coral 18O has much higher variability in winter than that in summer and 

autumn. For 13C records, even though the summer variability is always higher than 

spring and autumn for all the 3 records, the 4.8 ka coral apparently has much stronger 

predominance. 

7.3.4 Periodicity of coral 18O interannual variability 

Figure 7.5A illustrates the periodicity of seasonal and annual coral 18Os. Since the 
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Sumba coral 18O climatology was shaped mainly by seasonal characteristics in austral 

winter (July ~ September), summer (November ~ February), and autumn (March ~ 

May), the periodicities of mean 18Os in the three seasons and its annual means 

(January ~ December) have been analysed. At first the mean 18O for the corresponding 

period of a year were calculated. And then 18O was obtained by subtracting the 

subsequent year’ mean. At last Lomb-Scargle periodogram using a Bartlett window was 

generated for 18O of the whole record using software AutoSignal. Choosing 18O 

rather than 18O is to focus on interannual variability and to suppress the decadal 

variability. Comparison between using 18O and 18O has indicated that using 18O 

could effectively keep periodic characteristics between 2 to 5 years. 

Even though there is minor difference in resolution for the three corals because of the 

difference of numbers of years for analysis (37, 56, and 21 years for modern, 3.7 ka, and 

4.8 ka corals, respectively), the similarities and dissimilarities for the periodicity are 

distinct both among the seasons and among the corals. We pay special attention to 3 

bands of periodicity: spectral peaks near 3.6 yr, 3 yr, and 2.2 - 2.6 yr, since the Sumba 

coral 18Os present significant variation at these periods. 

Similarities for three corals: all the three corals demonstrate strong and similar 

seasonal variation in periodicity. The lower frequencies with spectral peaks near 3.6 yr 

have much more power in winter than in other seasons, while the higher frequencies in 

bands of 2.2 - 2.7 yr show more dominant power in summer. The 3 yr period seems to 

have more power in autumn even though it also has strong power in summer. 

Dissimilarities for three corals: 4.8 ka coral shows strong periodicities both in 3.6 yr 

and the quasi-biennial band of 2.2 ~ 2.8 yr; 3.7 ka coral has preponderant period of 3 yr, 

while the modern coral 18O shows similar concentration of power in the 3 bands of 

frequencies. 
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Figure 7.5  Periodicity of seasonal or annual 18O means for Holocene corals and the correlation with indices of 

ENSO, remote equatorial Indian Ocean forcing, and the Asian-Australian monsoon. A: Lomb-Scargle periodograms 

of mean 18Os during winter, summer, autumn, and yearly values for 4.8 ka (left), 3.7 ka (middle), and modern 

(right) corals. A Bartlett window is used when generating the Fourier spectra. Shaded areas represent characteristic 

periods of ENSO (blue, 3.6 yr), tropical Indian Ocean forcing (red, 3 yr), and the Asian-Australian monsoon (green, 

2.1~2.8 yr). Thin red lines are the 90% significance levels. B: Lomb-Scargle periodograms of NINO3.4 index (left), 

Indian Ocean Dipole Mode Index (DMI, middle), and All India summer monsoon rainfall (ISMR, right). The upper 

panels are for data during 1962~1998, the lowers for all available data. Data sources: NINO3.4 index and ISMR from 

http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/.NINO34/ [Kaplan et al., 1998] and 

http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.india/ [Parthasarathy et al., 1995], the DMI from Saji’s 

personal webpage at http://iprc.soest.hawaii.edu/%7Esaji/dmi.txt [Saji et al., 1999]. 
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7.3.5 Periodicity of ENSO, monsoon, and equatorial Indian 

Ocean forcing 

Since the average values for specific period of time in a year were applied to analyse the 

periodicity of seasonal and annual coral 18Os, the annual means of indices 

characterizing the three climate systems were also used to analyse their periodicity to 

keep consistency in favour of comparing and correlating. The results are shown in 

Figure 7.5B with the upper panels estimate the power spectra for data from 1962 – 1998 

which is the same period for the modern coral record, and with the lower panels for all 

available data. 

Periodicity of ENSO: NINO3.4 SST index from the central tropical Pacific was 

spectrally analysed to represent the periodicity of ENSO. The power spectrum for 

NINO3.4 index during 1962 – 1998 has variance concentrated in the characteristic 3.6 

yr and 5 year bands (upper left panel of Figure 7.5B), which is completely consistent 

with previous works such as analysis of NINO3 index for 1960 – 1998 by Hughen et al. 

[1999b] and analysis of all El Niño events between Little Ice Age and the present by 

Enfield and Cid [1991], indicating that the spectral peaks around 3.6 and 5 yr are not 

due to aliasing by using annual means and spectral analysis using annual means of 

NINO3.4 index in this study could effectively catch the periodic characteristics of 

ENSO. Since 18O was used to estimate the power spectra for coral records and the 

low-frequency bands near or above 5 year have been suppressed, only the 3.6 year band 

was used to be a characteristic period for ENSO in this study.  

Periodicity of monsoon: Even though early studies considered the monsoon to be a 

regional physical entity, the trend in modern monsoon studies has been toward an 

understanding of the ‘global’ monsoon by studying the dynamic links between regional 

subsystems [Meehl, 1987; McBride, 1998; Webster et al., 1998; Trenberth et al., 2000; 

Clemens et al., 2003; Chang et al., 2004], The most active Indian, East Asian, and 

Australian monsoons are now often referred as one macroscale phenomenon as 
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Asian-Australian monsoon with the tropical convective maximum undergoing an annual 

migration from over north India in July to Indonesia and northern Australia in January 

[Meehl, 1987; Hung et al., 2004; Chang et al., 2005]. A quasi-biennial variability (2 – 

2.8 year period centred in 2.6 year, referred as tropospheric biennial oscillation – TBO) 

has been found to be a fundamental characteristic for the Asian-Australian monsoon 

rainfall in all the India, East Asia, Indonesia, and Australia subsystem regimes [Meehl, 

1997; Webster et al., 1998 and references there; Meehl and Arblaster, 2002]. Even 

though the ENSO and IOD also display minor TBO signals, we attribute TBO signals 

mainly to the monsoon when the TBO is obviously dominating the power spectrum over 

other peaks in 2 – 5 yr bands. There is considerable seasonal persistence from the south 

Asian to Australian monsoon with a strong south Asian or Indian monsoon tending to 

precede a strong Northern Australian monsoon and vice versa for weak monsoons 

[Meehl and Arblaster, 2002; Loschnigg et al., 2003; Hung et al., 2004]. So, it is 

reasonable that All India Summer Monsoon Rainfall dataset has been used for spectral 

analysis in this study to display the characteristic quasi-biennial variability of the 

Asian-Australian monsoon in the case of lack of long-term and complete archives of 

local rainfall (Figure 7.5B right panels). 

Periodicity of IOD and equatorial Indian Ocean forcing: the middle panels of Figure 

7.5B illustrate the cyclicity of the Indian Ocean Dipole events [Saji et al., 1999; Webster 

et al., 1999] by estimating the power spectrum of the Dipole Mode Index from SST 

anomaly in the eastern and western equatorial Indian Ocean [Saji et al., 1999]. Even 

though controversial theories have been suggested for the forcing of this recent 

discovered phenomenon [Baquero-Bernal et al., 2002; Meehl and Arblaster, 2002; 

Yamagata et al., 2004; Yu and Lau, 2004], IOD has been found to be strongly influenced 

both by ENSO [Baquero-Bernal et al., 2002; Yu and Lau, 2004] and monsoon 

[Loschnigg et al., 2003; Yu and Lau, 2004]. The power spectrum of the DMI clearly 

displays their strong impacts by remarkable peaks around 5 and 3.6 yr (for ENSO) and 

the TBO periods (for monsoon) (Figure 7.5B middle panels). However, the most salient 

peak in the DMI spectrum is the strong and well-separated peak around 3-year period 
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which is not shown in both ENSO and monsoon spectra, implying that some unique 

process internal within the Indian Ocean might be involved in the formation of the IOD 

events. Recently Wijffels and Meyers [2004] noticed that the equatorial Indian Ocean 

winds have much more energy at higher frequencies with spectral peaks near periods of 

3 yr and between 1 and 2 yr compared to the lower-frequency energy of the Pacific 

winds (periods great than 3.2 yr, ENSO band) and used this to distinguish the impact of 

these two sources of remote energy on the Indonesian throughflow region. Sakova et al. 

[2006] also identified a very clear and well-separated 3 year period for altimeter sea 

surface height variability over the Sumatra-Java upwelling region and the western 

tropical Indian Ocean where the zonal equatorial Indian Ocean winds have substantial 

influence. So this 3 year period might represent the remote equatorial Indian Ocean 

winds which are likely one of the forcing of IOD.  

Change in periodicity: the spectral analysis using the annual means has also caught the 

changes in ENSO behaviour, such as spectral shifts from lower amplitudes and longer 

periods (5.7 yr) to higher amplitudes and shorter periods (3.6 and 5 yrs) in the 1970s, 

which is consistent with previous results ([Hughen et al., 1999b; Kumar et al., 1999]. 

But the 3.6 yr period is still one of the most important characteristics among the 

interannual variability of ENSO since 1856, especially in the frequency band of 2 – 5 yr 

which is the focus in this study. Enfield and Cid [1991] proved that the 3.5 and 5 yr 

periods did not change since the Little Ice Age, and Rodbell et al. showed that the 

modern ENSO periodicity of 3.6 and 5 yr periods has been established since 5 ka. 

Therefore, in this study it is reasonable to use the 3.6 yr period to correlate the ENSO 

with the Holocene coral records. The quasi-biennial periods (2 – 2.8 yr) are fundamental 

to the monsoon [Meehl, 1997; Webster et al., 1998 and references there; Meehl and 

Arblaster, 2002], so we assume its consistency during Holocene. There is no historical 

record for the variability of IOD and we would try to establish the association between 

the coral records and the 3 year period in this study. 

For all the analysis of periodicity in coral records and the instrumental data, the similar 
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results have been obtained from Blackman-Tukey spectra using software Analyseries 

provided by Paillard [Paillard et al., 1996], indicating that the achieved periodicities are 

not biased by different spectral methods. 

7.4  DISCUSSION 

7.4.1 Seasonal variation in the association between Sumba 

coral records and major climate phenomena 

Strong seasonal variation in the association between Sumba coral records and the three 

climate phenomena of ENSO, monsoon, and equatorial Indian Ocean forcing has been 

found. This made it possible to partly disentangle the complications of the three 

intertwisted climate systems. 

Winter coral 18O and the ENSO 

It has long been known that there is a strong seasonal variation in the association 

between Indonesian rainfall and the ENSO [Nicholls, 1981; Hastenrath, 1987; Haylock 

and McBride, 2001; McBride et al., 2003], that is, rainfall in the Maritime Continent is 

strongly related to the ENSO during the dry half of the year (July to November) but has 

a very weak association with ENSO during the summer-wet season months. The Sumba 

coral 18O records in this study display the same variation. 

Winter 18O of Sumba modern coral has dramatic interannual variability (Figure 7.6A). 

Comparison between the winter coral 18O and the ENSO index indicates their strong 

correlation (Figure 7.6A and B). All the winters with relatively depleted 18O are 

corresponding to La Nina events, and all the 10 El Niño events during 1962 to 1998 

according to the definition of El Niño [Trenberth, 1997] have been recorded with 

obviously enriched 18O. With only two exceptions in 1967 and 1985, the Sumba winter 
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18Os of 37 years are very good records for ENSO events. The obvious exception in 

1967 is related to a positive event of Indian Ocean Dipole (IOD) and the minor 

exception in 1985 might be connected with the mid-1980s cooling of background 

temperature. Even though evident signatures of IOD events, the influence of ENSO is 

dominant by comparison of the winter coral 18O with NINO3.4 index and DMI (Figure 

7.6B). The 1967 IOD event shows off because only a very weak La Niña occurred that 

year. The ENSO’s dominating impact over IOD could be further illustrated by the 

obviously enriched winter coral 18O in 1992 which mainly exhibits effect of the strong 

El Niño not the opposite effect of the strong negative IOD event. 
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Figure 7.6  The dominant control of ENSO and the signature of IOD on winter 18O of the modern Sumba coral 

RSM2b. A: Red curve represents the fortnightly coral 18O with annual maxima in austral winters (around August). 

Red circles indicate the winter mean 18Os. Shaded areas represent El Niño years based on the definition of Trenberth 

[Trenberth, 1997]. B: Red curve with circles represents the winter averages (July to September) of the detrended 

coral 18O (long-term trend and decadal variability removed using the mean of winter average18O value of -5.24‰ 
as the baseline). Blue and grey-shaded bars are 11-month smoothed NINO3.4 and Indian Ocean Dipole Mode Index 

(DMI). The sources of original monthly NINO3.4 and DMI indices are the same as in Figure 7.5.  

No strong correlation could be found between the ENSO index and the coral 18O 

means in summer or autumn, indicative of strong seasonal variation in the association 
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between the Sumba modern coral 18O and the ENSO.  Spectral analysis of the 

seasonal modern coral 18Os also supports the seasonal variation. The right panels of 

Figure 7.5A suggest the dominant ENSO period of 3.6 yr over IOD period of 3 yr in 

winter coral 18O, but only very low concentrations of power in 3.6 yr compared with in 

3 yr and the quaci-diennial periods in summer and autumn 18O.  This seasonal 

variation seems to occur in Holocene coral 18O records. The left panels of Figure 7.5A 

illustrate a very strong period of 3.6 yr in winter 18O, but not in summer and autumn 

18Os for the 4.8 ka coral. 

Summer coral 13C and the monsoon 
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Figure 7.7  Annual climatology of modern coral 13C (thick blue curve with triangles) and comparison with 

annual climatology of rainfall (thick green curve), Surface incoming short-wave radiation (thick orange curve), and 

top of atmosphere insolation of 0 ka (thin red curve), 3.7 ka (thin blue curve), 4.8 ka (thin grey curve), and 5.7 ka 

(thin green curve) in the Sumba Strait. Rainfall data are from CMAP ([Xie and Arkin, 1997]. Monthly surface 

incoming short wave Radiation data are from Atlas of Surface marine data 1994 [da Silva et al., 1994]. Top of 

atmosphere insolation data are calculated by AnalySeries software [Paillard et al., 1996] using the Laskar 2004 

solution [Laskar et al., 2004]. 

The association between summer Sumba modern coral 13C and monsoon rainfall peak 

has been demonstrated in detail in Chapter 6. During the long dry season (April to 
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November) the coral 13C is mainly controlled by the light availability, while during the 

wet season (December to March) the rainfall overwhelmingly influences the coral 13C 

(as illustrated in Figure 7.7). On the one hand, rainfall reduces the light availability by 

increased cloud cover and turbidity resulting from run-off through the nearby Mondu 

River during or after rainfall. On the other hand, rainfall brings a huge amount of 

terrigenous nutrients by the run-off and increased feeding of the coral host (polyp) on 

these nutrients is probably the major cause of the light skeletal 13C peak during the 

summer wet season in the Sumba coral RSM2b.  In addition, recent human activities 

may have remarkably increased the land run-off. We think the Sumba modern coral 13C 

may have been affected and that the relative magnitude of the summer 13C peak cannot 

be directly compared with the intensity of the monsoon, while the 3.7 and 4.8 ka records 

should reflect the relative intensity of the monsoon, assuming human activity during 

those periods was negligible.  

Both the 3.7 ka and 4.8 ka corals strikingly have similar mean climatology as the 

modern coral in that all of them are shaped by a trough in austral spring and two peaks 

in summer and late autumn. Since the coral 13C between the autumn peak and the 

spring trough is controlled by light availability and the light availabilities in the same 

season during the 3 Holocene periods are very similar (the insolation curves in Figure 

7.7), it is reasonable to speculate that the summer peaks in other 2 Holocene coral’s 

climatology are also associated with monsoonal rainfall. This seasonal variation in the 

association with monsoon is also supported by the spectral analysis of seasonal coral 

13C. For example, the 4.8 ka coral summer 13C shows dominant monsoonal 

periodicity of 2.8, 4.8, and 6.7 yr, while spring and autumn 13Cs show dominant solar 

activity periodicity of 11.8 yr (not shown here). 

Summer coral 18O and the monsoon 

Both the 4.8 ka and 3.7 ka corals have a remarkable peak of depleted 18O in December 

to February in their mean climatology (Figure 7.3A). The timing strongly implies a 
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significant influence of local monsoonal rainfall. The strong influence of monsoon has 

been further supported by overwhelming periodicity in the quasi-biennial bands shown 

on the power spectra of the summer 18O for both corals (Figure 7.5A). Disappear of the 

summer peak in the modern coral’s mean climatology might be related to the declined 

intensity of summer monsoon in the present time relative to mid-Holocene, but the 

monsoon’s imprint could still be found from the variability of the modern coral’s 

summer 18O which shows evident monsoonal periodicity (Figure 7.5A). 

Autumn coral 18O and the equatorial Indian Ocean forcing 

All the Holocene corals record a distinct freshening of sea water during autumn (March 

to May) in the coral 18O climatology (Figure 7.3A). Chapter 5 has demonstrated the 

association of the depleted 18O peak for the modern coral with the penetration of 

remote forced tropical Indian Ocean Kelvin wave which brings low-salinity South Java 

Current water into the Savu Sea. The spectral analysis of the autumn coral 18Os for the 

3.7 ka and 4.8 ka corals also display the preponderant association between the Sumba 

coral 18Os and the Indian Ocean forcing in autumn over in winter and summer (Figure 

7.5A). 

7.4.2 Variation in monsoon, ENSO, and equatorial Indian Ocean 

forcing since mid-Holocene 

Since different seasonal coral 18Os are dominantly associated with different climate 

phenomena, the relative activity of the three phenomena could be evaluated by 

comparing the relative magnitude of the interannual variability of the seasonal coral 

18O in different Holocene periods. To avoid the effect of different long-term trend and 

decadal variability among the 3 corals, we compare the relative percentages of the three 

seasons’ magnitude of variability assuming the total variability is one hundred percent 

in one year’s coral 18O, instead of directly comparison of the absolute values of the 

standard deviation. Figure 7.8 illustrates the comparison of the relative magnitude of the 
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interannual variability in seasonal 18O and 13C of the Holocene Sumba corals. 
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Figure 7.8  A: Relative percentage of magnitude of interannual variability for coral 18O in winter, summer, and 

autumn. It strongly implies the relative intensity of interannual variability of ENSO, monsoon, and the equatorial 

Indian Ocean forcing in the 3 periods of Holocene. B: Relative percentage of magnitude of interannual variability for 

coral 13C in spring, summer, and late autumn. The green bars generally display variation in intensity of summer 

monsoon with part contribution of the human activity in modern time, while the golden and the grey bars are related 

to the activity of the surface solar radiation maximum and minimum in a year. C: Holocene evolution of the Asian 

summer monsoon and El Niño, as recorded by a Chinese speleothem 18O [100-yr smoothed from original data in 

Wang et al., 2005] (green curve; more depleted 18O values correspond to a stronger monsoon) and Peruvian lake 

sediments [Moy et al., 2002] (blue bars), respectively. Red triangles denote the growth time of the Sumba Holocene 

corals. 
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We think they generally suggest the relative intensity of the activity of the ENSO, 

Asian-Australian monsoon, and the equatorial Indian Ocean forcing since mid-Holocene, 

but cautions must be taken: 

1. One reason is that three integrants are included in the percentage composition, and 

if both of other two integrants are relatively lower, the remaining one would be 

much higher in percentage, such as that in modern coral 18O, the winter magnitude 

of variability is higher than that in other two Holocene coral, but it does not mean 

the ENSO has more intensive variability than the other two Holocene times. The 

high percentage of winter 18O variability at modern corral should partly be 

attributed to the relatively decreased activity for both the monsoon and the Indian 

Ocean forcing. 

2. The second reason is, even though one climate phenomenon is usually dominant in 

a specific season, other climate phenomena also have minor contribution in the 

same season; when the dominating climate phenomenon declined, the minor 

contributor would show up. As an example, in 3.7 ka, the winter coral 18O 

variability was controlled by the Indian Ocean forcing and the ENSO became minor 

contributor because of the dominant activity of the Indian Ocean forcing at 3.7 ka 

indicated by the spectral analysis, therefore, much of the percentage of the winter 

18O variability might be attributed to the Indian Ocean forcing instead of the 

ENSO.  

3. The third reason that cautions should be taken is that, other factors might be 

responsible for some of the variability amplitude of the seasonal coral records. For 

instance, all the 18O evidences including the mean climatology, the magnitude and 

periodicity of the summer variability support a weakest monsoon activity in modern 

time, but the magnitude of summer 13C variability of the modern coral has a 

slightly higher percentage than that in 3.7 ka. We think the increased land run-off 

resulting from increased human activity in modern time, instead of increased 

monsoon rainfall, should be responsible for the higher 13C variability. 
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Fortunately, the high-resolution Sumba coral records provide information not only on 

the magnitude of interannual variability, but also on the mean climatology and the 

periodicity of the variability for both 18O and13C. Comprehensive analysis of all the 

information could provides a more overall understanding for the variation in the three 

climate phenomena since mid-Holocene. 

Variation in the Asian-Australian monsoon 

Both the Sumba coral 18O and 13C record the activity of monsoonal rainfall. It 

provides a good opportunity to cross-check the variation of the monsoon since 

mid-Holocene. In summary, the following coral evidences support a weakening 

monsoon since 5.7 ka: 

1. Gradually decreased height of the summer peak in 18O mean climatology from 4.8 

ka, to 3.7 ka, to 0 ka (Figure 7.3A), indicating declining of the amount of rainfall. 

The freshening of the water in summer recorded by the Sumba coral 18O should 

result from the monsoonal rainfall which influences the local amount of sea surface 

precipitation, input of local river, and the salinity of the penetrated Southern Java 

Current in summer. 

2. 3 of the 4 summer peaks are extraordinarily strong in the short 5.7 ka coral 18O 

record in comparison with other Holocene coral records (Figure 7.1), suggesting 

strongest summer monsoonal rainfall during 5.7 ka in all the periods. 

3. Gradually deceased percentage of magnitude of interannual variability in summer 

18O from the 4.8 ka (36%), to 3.7 ka (31%), to 0 ka (28%) (Figure 7.8A), 

indicative of decreased activity of summer monsoon. 

4. Declined dominance of the monsoonal periodicity in quasi-biennial bands in 

summer 18O from 4.8 ka, to 3.7 ka to modern time (Figure 7.5A). 

5. The much higher summer peak relative to the autumn peak in 4.8 ka than in 3.7 ka 
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(Figure 7.4) reflects stronger local monsoonal rainfall in 4.8 ka than in 3.7 ka, even 

though the relative intensity of the local monsoon rainfall at those periods in 

comparison with the modern time could not be judged from the relative magnitude 

of those peaks in coral 13C climatology given strong impact of large land run-off 

resulting from human activity in the modern time. 

6. Remarkably increased relative magnitude of interannual variability in the 4.8 ka 

coral summer 13C (49% to 36% and 39%) in contrast to the almost invariable 

ratios (near 1.3) of autumn to spring 13C in the three corals (Figure 7.8B), proving 

a remarkably stronger monsoon in 4.8 ka. As mentioned above, the slightly stronger 

variability of modern coral 13C than that of 3.7 ka might result from the increased 

land run-off owing to increased agricultural activity in modern time, which 

increased the turbidity of sea water and the input of terrigenous nutrients with 

depleted 13C. After deducting the influence of the human activity, the monsoon 

activity in modern time is more likely weaker than that in 3.7 ka. 

Variation in ENSO 

Sumba coral winter 18O shows obvious variation in average values, magnitude and 

periodicity of its interannual variability among the 3 Holocene corals. Comprehensive 

analysis of this variation should reveal the evolution of ENSO in activity and intensity 

during Holocene owing to the strong association between the Sumba winter coral 18O 

record and the ENSO. 

Coral mean climatology has shown that the 4.8 ka coral 18O has a remarkable 0.05‰ 

more enriched winter maximum than the modern one, which accounts for one eighth of 

the whole seasonality (Figure 7.3A inset). It has been shown that the enriched winter 

18Os of the modern coral mainly result from El Niño events with minor contribution of 

positive IOD events (Figure 7.6). Also, the power spectrum of the 4.8 ka coral winter 

18O’s interannual variability has demonstrated dominant ENSO variability over IOD 

(Figure 7.5A), indicative of dominating contribution of El Niño events to the 
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remarkably enriched 4.8 ka winter coral 18O average value. Therefore, the mean 

climatology shows a significantly stronger ENSO in 4.8 ka than in present time. 

The spectral characteristics of winter coral 18Os further demonstrate the ENSO’s 

Holocene evolution. Since the winter coral 18O manifests the imprint of both ENSO 

and IOD, comparison of the relative concentration of their characteristic frequencies 

(3.6 yr and 3 yr) could tell their relative intensity. Figure 7.5A suggests an 

overwhelming dominance of ENSO in 4.8 ka, an evident dominance of ENSO in 

present time, and very weak ENSO in 3.7 ka. 

Analysis of variability magnitude for the coral winter 18O (Figure 7.8A) indicates that 

in 4.8 ka the ENSO had comparable magnitude of variability with monsoon which has 

been shown very strong, supporting a very strong ENSO in 4.8 ka. The 3.7 ka winter 

coral 18O shows a weakest variability among the three coral. Given the very strong 3 yr 

period and very weak 3.6 yr period of the interannual variability, much of the variability 

magitude should be attributed to IOD, so the amplitude of ENSO variability in 3.7 ka 

should be much weaker. As mentioned before, the high percentage of variability in the 

modern coral winter 18O does not mean a very strong ENSO activity; the high 

percentage of winter 18O variability should partly be attributed to the low 18O 

variability both in summer and autumn. Furthermore, some part of the variability should 

be accounted as the contribution of the IOD which has obvious signature in modern 

winter coral 18O. Therefore, the percentage of ENSO variability in the three climate 

phenomena should be very high in 4.8 ka, very low in 3.7 ka, and moderate in modern 

time.  

The variation in ENSO activity could also be reflected by some statistic data on the 

enriched winter coral 18O events. The 2-sigma standard deviation of the detrended 

coral 18O could be well used to diagnose the El Niño events for the Sumba modern 

coral record, which assigns 13 of the all 37 winters during 1962 to 1998 as El Niño 

winters, consistent very well with the definition of Trenberth [1997] with only 1 

exception in 1967 which is a positive IOD event. By applied to Holocene records, 9 out 
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of 21 winters for 4.8 ka record, and 17 out of 55 winters for 3.7 ka record, exceed the 

2-sigma standard deviation line. Therefore, even if we consider all the enriched winter 

18Os in 3.7 ka as El Niño, the frequencies of enriched 18O events (9/21 = 0.43, 13/37 

= 0.35, 17/57 = 0.3) support a very active ENSO in 4.8 ka, a weak ENSO in modern 

time, and even weaker ENSO in 3.7 ka. Since it is more likely that a big part of the 

enriched winter 18O events correspond to positive IOD in 3.7 ka, the ENSO should be 

much weaker at that time. 

Variation in the equatorial Indian Ocean forcing 

Since the equatorial Indian Ocean forcing put more impression on the Sumba coral 18O 

in autumn than in winter and summer, the percentage of variability in autumn 18O for 

the three corals should reflect the relative intensity of variability in this inner Indian 

Ocean forcing. Figure 7.8A shows a very weak equatorial Indian Ocean forcing in 4.8 

ka, a preponderant intensity of variability in 3.7 ka, and a moderate intensity in modern 

time. Given that the ENSO was very weak in 3.7 ka and the 3.7 ka coral winter 18O 

should record more variability in the equatorial Indian Ocean forcing than the equatorial 

Pacific forcing, the relative percentage of the Indian Ocean forcing variability would be 

much bigger than the shown by the 3.7 ka autumn coral 18O. 

The variation of the equatorial Indian Ocean forcing has been further supported by the 

variation in periodicity of the autumn 18O for the three corals. The 3-yr period 

dominates the power spectrum of the 3.7 ka coral autumn 18O, but shows only a very 

low concentration in the 4.8 ka coral autumn 18O spectrum and a comparable 

concentration with other bands of period in the modern coral autumn spectrum (Figure 

7.5A). As shown before, the IOD also has obvious signature on the winter coral 18O, so 

the winter coral 18O also includes information on the periodicity of variability of the 

equatorial Indian Ocean forcing. Figure 7.5A shows that the power spectra of the winter 

18Os illustrate the same evolution for the Indian Ocean forcing: only a trace of 3-yr 

period in the 4.8 ka coral, a moderate concentration of the 3-yr period, and even a 

dominant 3-yr period in the modern coral winter 18O. The periodograms of the annual 
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mean 18Os display the same variation (Figure 7.5A the bottom panels). 

Even though there seems to be a slightly higher autumn peak on the mean climatology 

in 3.7 ka, the difference of the autumn peak among the 3 corals is not statistically 

significant (Figure 7.3A). The reason is that, the height of the autumn peak lie on not 

only the amount of the penetrated Southern Java Current (SJC) water driven by the 

remote equatorial Indian Ocean winds, but also the salinity of the SJC water which is 

related to the monsoonal rainfall in the source area of the SJC. But the winter maximum 

on the coral mean climatology might tell us some about the relative intensity of the IOD. 

We have attributed the evidently enriched winter 18O maximum in 4.8 ka to 

remarkably increased El Niño, but the enriched winter 18O in 3.7 ka relative to modern 

could not be attributed to El Niño because a weaker ENSO in 3.7 ka has been 

demonstrated by the coral 18O. As shown above, positive IOD events also bring 

enriched coral 18O, and it seems that the IOD events that have nothing to do with the 

ENSO even have stronger imprint than other IOD events related with ENSO, such as 

stronger influence of IOD in 1967, 1968, 1976, 1992, and 1994 (Figure 7.6). Therefore, 

remarkably stronger Indian Ocean forcing could also bring more enriched winter coral 

18O on the mean climatology even though our evidence shows a slightly less frequent 

cold events (enriched 18O) in 3.7 ka (17/57 =0.35) than in modern time (13/37 = 0.30). 

Taken together, the winter mean coral 18O might also suggest a stronger intensity of the 

equatorial Indian Ocean forcing in 3.7 ka than in the present time. 

It seems that the decadal variability (periods of 26, 13, 8.7 years), which are the most 

pronounced periodicity for both the 3.7 ka and the modern coral fortnightly 18O 

(Figure 7.1), has a close association with the equatorial Indian Ocean forcing because 

both the decadal periodicity and the forcing have the same variation through the three 

Holocene periods: the decadal variability was more frequent (higher variance in period 

of 8.7 years) in 3.7 ka when the equatorial Indian Ocean forcing is very strong; all the 

decadal variability were very weak in 4.8 ka when the equatorial Indian Ocean forcing 

was very weak; while the decadal variability has the same amplitude but is less frequent 
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(lower variance in the 8.7 yr period in comparison with the 3.7 ka coral) in the modern 

time when the equatorial Indian Ocean forcing is moderate. 

7.5  CONCLUSIONS 

4 high-resolution Holocene coral 18O and 13C records have been extracted from the 

Sumba Strait, Indonesia, where the Asian-Australian monsoon, ENSO, and the remote 

equatorial Indian Ocean forcing have strong impacts on the local climate and 

oceanography. Climatology of these coral records has been reconstructed, and the 

magnitude and periodicity of the interannual variability of the coral records have been 

achieved. Strong seasonal variation in the association between the Sumba coral records 

and the three prevailing climate phenomena has been found, which helps to partly 

disentangle the three intertwisted climate systems and makes it possible to reveal the 

variation of the individual climate systems since mid-Holocene. 

Both the coral 18O and 13C record a weakening monsoon since 5.7 ka. The monsoon 

was very strong in 5.7 ka and 4.8 ka, but evidently weaker in 3.7 ka. The modern time 

seems to have a weakest monsoon of the four periods of the Holocene.  

Comprehensive analysis of the coral climatology, the magnitude and periodicity of the 

interannual variability of the coral 18Os indicates a very strong ENSO in 4.8 ka, a very 

weak ENSO in 3.7 ka, and a moderate intensity of ENSO in the present time. This coral 

evidence for variation in the Asian-Australian monsoon and ENSO is consistent with 

previous findings for the evolution of Asian monsoon from a speleothem 18O record 

from Dongge Cave, southern China [Wang et al., 2005b], and Peruvian lake sediment 

evidence for ENSO evolution [Moy et al., 2002] (Figure 7.8C). 

The Sumba coral 18Os also record a variation in the equatorial Indian Ocean forcing 

since mid-Holocene: in comparison with the monsoon and ENSO, the remote equatorial 

Indian Ocean forcing was very weak in 4.8 ka, very strong in 3.7 ka, and moderate in 

the modern time. Since the equatorial Indian Ocean forcing might be one of the 
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important drives for the Indian Dipole Mode (IOD), the IOD events associated with this 

forcing should have corresponding variation since mid-Holocene. 

The Sumba corals provide a historical perspective to understand the evolution and 

interplay of the three complicatedly intertwisted climate phenomena which are all of 

global importance. The high-resolution windows illustrate climate scenes distinct from 

the modern time in the relative intensity and variability of the three climate components 

in one specific location. For example, the deficit of summer monsoonal rainfall is 

usually connected with a strong El Niño in most of the Asian-Australian monsoon 

regions including India, Southeast Asia, and Australia in modern time [Meehl, 1987; 

Ropelewski and Halpert, 1996; Webster et al., 1998; Kumar et al., 1999], the Sumba 

coral records, however, suggest a Holocene period in 4.8 ka when both the El Niño and 

the summer monsoon were strong. As a contrast, in 3.7 ka, a much weaker El Niño than 

today occurred in the mean time of a monsoon stronger than today. Similarly, even 

though the remote equatorial Indian Ocean forcing strongly influences the climate and 

oceanography of the Indian Ocean coastal areas of the Indonesia in modern time shown 

by this study and other recent studies [Sprintall et al., 1999; Sprintall et al., 2000; 

Hautala et al., 2001; Syamsudin et al., 2004; Wijffels and Meyers, 2004; McClean et al., 

2005; Sakova et al., 2006], the Sumba coral 18O displays a overwhelming dominance 

in 3.7 ka and a very weak activity in 4.8 ka of this remote forcing. Since this forcing 

might be one of the important drive for the IOD, this study demonstrates that the IOD 

associated with this forcing could show extraordinarily strong activity in period like 3.7 

ka when monsoon was stronger than today and ENSO was much weaker than today. 

Even though this study shows independent variation of the equatorial Indian Ocean 

forcing relative to the monsoon’s intensity and variability, it also suggests a reversed 

variation in relationship between the equatorial Indian Ocean forcing (EIOF) and the 

ENSO: a strong ENSO vs a weak EIOF, a weak ENSO vs a strong EIOF, and a 

moderate ENSO vs a moderate EIOF. More high-resolution windows of coral 18O are 

needed to further validate these relationships of the equatorial Indian Ocean forcing 

with the ENSO and with the monsoon. 



Chapter 7: Coral evidence for variation in monsoon/ENSO since mid-Holocene 

218                                  The Australian National University 

 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                          219 

CHAPTER 8 

MEAN CLIMATE, EL NIÑO VARIABILITY, AND MONSOON INTENSITY 

DURING TERMINATION II 



Chapter 8: Mean climate, El Niño, and Monsoon during Termination II 

220                                  The Australian National University 

ABSTRACT 

A 29-year-long fortnightly resolution 18O and 13C record was compiled for a 133.6 ka 

Porites coral from an early highstand of the penultimate deglaciation (Termination II) 

preserved within the Mondu raised reefs of Sumba, Indonesia. The high-resolution 

isotopic record gave a mean 18O value of 4.4‰ at 133.6 ka, which is 0.6‰ higher 

than the local Holocene coral records, and 1.0-1.2‰ higher than the local modern coral 

records. Calculations based on the coral 18O shows that the mean SST at 133.6 ka was 

~2.4oC lower relative to the middle Holocene SST. The seawater 18O at 133.6 ka was 

probably similar to the enriched 18O value observed for the mid-Holocene, rather than 

the depleted modern warm pool 18O value. 

The high-resolution 18O record for the Termination II coral displayed a dramatic 40% 

decrease in the frequency of strong El Niño events, relative to the modern-day 

frequency. The 18O and 13C climatologies both indicate that the Asian-Australian 

monsoon was more intense at 133.6 ka. The coral 18O climatology for 133.6 ka also 

suggests that freshwater input to the Sumba Strait peaked during October-December. 

This freshwater flux is interpreted to reflect the incursion of Kelvin waves into the 

Sumba Strait during the two monsoon transitions (May and November) at 133.6 ka, in 

contrast to the penetration of only the austral autumn Kelvin wave into the Sumba Strait 

in mid-Holocene and modern times. The juxtaposition of a stronger monsoon and 

weaker El Niño during the different background climate state of Termination II (lower 

SST, higher seawater 18O) provides a new perspective on the interactions between 

these climate systems. 
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8.1   INTRODUCTION 

Ocean-atmosphere interactions in the tropical Indo-Pacific Warm Pool are fundamental 

drivers of the global meridional Hadley and zonal Walker circulations [Keenan et al., 

2000]. Recent research indicates that changes in sea surface temperatures and 

atmospheric convection in this region play important roles in modulating global climate 

on interannual, decadal, millennial, and even glacial-interglacial time-scales [Cane, 

1998; Cane and Clement, 1999; Hoerling et al., 2001; Stott et al., 2002; Visser et al., 

2003]. Knowing the natural bounds of past ocean-atmosphere variability in the Warm 

Pool region will significantly improve our understanding of the mechanisms of climate 

variability at different time scales, and enhance our ability to predict the climate in the 

future. 

Massive, long-lived corals are one of the only paleoclimate archives capable of 

providing high resolution records (weekly to monthly) for periods when climate 

boundary conditions were different from those of the present day [reviewed by Druffel, 

1997; Dunbar and Cole, 1999; Gagan et al., 2000]. Geochemical records extracted 

from corals play a pivotal role in the reconstruction of paleoclimate variability on 

intrannual, interannual and decadal time-scales, and have shed light on the impact of El 

Niño events on climate variability throughout the tropics [Cane, 1986; Enfield, 1989; 

Philander, 1990; Trenberth and Hoar, 1997; Cane, 2005]. Changes in the isotopic 

composition of coral skeletons also record the variability of monsoonal rainfall in the 

monsoon prevailing regions [Charles et al., 1997; Charles et al., 2003; Pfeiffer et al., 

2004; Sun et al., 2005; Yu et al., 2005; Chakraborty, 2006; D'Arrigo et al., 2006; 

Morimoto et al., 2007]. Knowing the historical variability of El Niño events and 

monsoon rainfall and their relative intensity during different background climate states 

could provide new perspectives for understanding the mechanistic links between these 

two important climate systems. Therefore, coral records will serve to improve the 

prediction of El Niño and monsoon variability that will probably occur as the mean 
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climate state changes in the future [IPCC, 2007]. 

Here we report a 29-year-long high resolution record of skeletal 18O and 13C for a 

massive Porites coral that grew during a sea-level highstand during the penultimate 

deglaciation (Termination II, 140-128 ka) preserved within the Mondu raised reefs, 

located southwest of Cape Laundi on the island of Sumba, eastern Indonesia. In this 

chapter, the fossil coral record will be compared with modern and Holocene coral 

records from the same site to explore the mean climate state, El Niño variability, and 

Asian-Australian monsoon intensity at ~133.6 ka during Termination II. 

8.1.1 The Termination II coral 

The Termination II Porites coral gave a conventional 230Th age of 136.8 ka for the most 

pristine sub-sample with an initial 234U value of 158.9‰, which implies that the true 

age of the coral is slightly younger. Further analysis of multiple sub-sample 

measurements demonstrated that the coral experienced two distinct processes of 

U-series diagenetic alteration and two models derived from each process gave 

essentially the same model correction age of 133.6 ka (see Chapter 4 for dating of this 

coral). 

The U-series dating confirmed that this coral was growing during the termination of the 

penultimate termination period (Termination II, 140 ka ~ 128 ka) [Martinson et al., 

1987; Muhs, 2002; Brauer et al., 2007]. During Termination II, sea level was believed 

to rise rapidly between the glacial ~ -120 m, [Lea et al., 2002; Cutler et al., 2003; 

Risebrobakken et al., 2006] and interglacial ~ +5 m; [Stirling et al., 1995] positions. 

However, recent research suggests that Termination II did not consist of a monotonic 

sea-level rise as occurred during Termination I [Fairbanks, 1989; Bard et al., 1990] but 

instead included an interlude of significant sea-level fall [Esat et al., 1999; Gallup et al., 

2002; Antonioli et al., 2004; Siddall et al., 2006], as shown in Figure 8.1. The sea level 

had reached an early highstand lasting several millennia around 134 ka, followed by a 
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sharp drop in sea level and still-stand of several millennia around 131 ka, before the 

final sea-level rise to the MIS 5e interglacial starting at 128 ka. 
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Figure 8.1  Compilation of recent published results on sea level change during Termination II following Siddall 

et al. [2006] and relationship to Sumba fossil coral MV03-A-2 at 133.6 ka. Vertical grey shading denotes the age of 

the coral and pink square illustrates that the TII coral colony might grow at -8 m to -12 m below the sea level at 133.6 

ka if an uplift rate of 0.49 m/kyr is applied [Pirazzoli et al., 1991]. Dashed grey line shows the modern sea level. 

Black curve with dots is sea-level with error margin (±12 m, thin black lines) from foraminiferal 18O in Red Sea 

sediment core GeoTue KL11 [Siddall et al., 2006]. Cyan blocks represent sea-level estimates from fossil corals at 

Huon Peninsula, Papua New Guinea [Esat et al., 1999] and western Australia [Stirling et al., 1995]. Red crosses and 

lines represent open-system U-series ages of corals and sea level [Thompson and Goldstein, 2005]. Green triangles 

with error bars represent times when speleothems in the Bahamas were undergoing a growth phase and sea-level 

should be below these levels [Richards et al., 1994; Smart et al., 1998]. Blue line is scaling to sea level of the V19-30 

benthic 18O (Uvigerina) record after Cutler et al. [2003] with 1 ky added to age scale to aid comparison (2-ky 

running average smoothed from original data which are shown as blue crosses and available at: 

http://depphi.esc.cam.ac.uk/coredata/wwwcoredata/VEMA/v1930uv.html). 
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Reconstruction of the climate during Termination II would be highly significant because 

it involves several distinct periods when the mean climate was different from that at the 

present time. Not only does it include a period when the climate was slightly warmer 

(the last interglacial) it also includes a slightly cooler period (the early highstand around 

134 ka), and a much colder period (the lowstand at 131 ka). Until now, only three coral 

records of the last interglacial climate [Hughen et al., 1999; Tudhope et al., 2001] and 

three coral records of the lowstand (~131 ka) climate of the warm pool have been 

published [McCulloch et al., 1999; Tudhope et al., 2001]. The new Sumba coral record 

presented here fills in a gap because it contributes, for the first time, an important 

climate record for the period of the highstand around 134 ka. 
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Figure 8.2 Location of Porites corals (stars) and physiography of the Mondu raised reefs on the north coast of Sumba, 

Indonesia. Dark stippling in inset marks the average extent of the Indo-Pacific Warm Pool (IPWP, mean annual 

SST >28 oC), as defined by Yan et al. [1992]. 

8.1.2 Climatology and oceanography 

The island of Sumba is located in the south-central sector of the Indonesian archipelago 

(Figure 8.2). The study area is located on the central north coast of the island, facing 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                          225 

Sumba Strait and the western end of the Savu Sea, one of the inner Indonesian seas. As 

a part of the Indo-Pacific Warm Pool (IPWP, [Yan et al., 1992], the study area has an 

annual mean sea surface temperature (SST) of 28.2 oC. The local mean SST is close to 

or exceeds 29 oC for six months of the year, and it is only in mid-August SST when the 

SST drops sharply to below 26.5 oC (Figure 8.3). Even though most of Indonesia 

receives high rainfall by world standards, Sumba is relatively dry with a mean annual 

rainfall of 1655 mm (1979 to 2005), with most of the rainfall concentrated between 

December and March. The mean rainfall during the peak wet season (January / February) 

is 15 times as great as the rainfall in August. The long dry season lasts for up to eight 

months (April-November) with a mean rainfall as low as 22 mm in August (Figure 8.3).  

The climatology of the local sea surface salinity is consistent with the low-salinity 

characteristic of the Indo-Pacific Warm Pool [annual average < 34.2 ppt (part per 

thousand)]. In spite of that, it still shows small annual variability including freshening 

during May to July with low SSS of 33.8 ppt in June. Surprisingly, Figure 8.3 shows 

that the most saline surface water coincides with the summer monsoon peak during 

December to March, indicative of little effect of local rainfall on sea surface salinity 

even though the summer monsoon is as strong as 330 mm/month. Similarly, Figure 8.3 

suggests that the local incoming surface radiation has little effect on the seasonality of 

the local sea surface temperature. 

The reason that local environmental factors have little impact on the SST and SSS in the 

study area is that the study area is one of most active passageways for oceanic currents 

in the world (Figure 8.4) and they control the variability of SST and SSS. The research 

area is located on the southern side of the inner part of the Sumba Strait, which is one of 

the most important outflows of the Indonesian Throughflow (ITF) [Potemra et al., 2003; 

Sprintall et al., 2003; Gordon, 2005]. The ITF transports Pacific water into the Indian 

Ocean via the Indonesia seas and is driven by the Pacific-Indian pressure gradient. The 

transport varies with the seasonal cycle in wind stress and is at its maximum during 

May to September when flow is enhanced by the local Ekman response to the southeast 



Chapter 8: Mean climate, El Niño, and Monsoon during Termination II 

226                                  The Australian National University 

monsoon [Wyrtki, 1987]. Thus it is likely that the flow through the Sumba Strait in the 

austral winter would reflect the uniquely characterized Indonesian Sea Water (ISW) 

which results from the mixing of Pacific waters with regional rainfall, river runoff, and 

inflows from marginal seas (such as South China Sea) into the Indonesian seas [Gordon 

et al., 2003; Gordon, 2005]. 
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Figure 3.3  The annual climatologies around Sumba, Indonesia. Data sources are as follows: IGOSS sea surface 

temperature (SST, black curve, 1971-2000 pentad data [Reynolds et al., 2002],  http://iridl.ldeo.columbia.edu 

/SOURCES/.IGOSS/.nmc/), Carton-Giese SODA dataset V1.4.2 sea surface salinity (SSS, parts per thousand, blue 

curve, 1958-2001 monthly data [Carton et al., 2005], http://iridl.ldeo.columbia.edu/SOURCES/.CARTON-GIESE 

/SODA/.v1p2/), CMAP rainfall (green curve, 1979-2005 pentad data [Xie and Arkin, 1997], http://iridl.ldeo. 

columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.Merged_Analysis), and Atlas of Surface Marine Data 1994 

incoming short-wave radiation (orange curve, 1945-1993 monthly data [da Silva et al., 1994], 

http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/.SMD94 /.climatology/.shortrad/). 
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It has been shown that the El Niño-Southern Oscillation (ENSO) has a strong influence 

on rainfall and sea surface temperature in the Indonesia maritime continent on 

interannual time-scales; during a El Niño event, rainfall is suppressed and ambient SST 

is cooler than average, with the converse happening during a La Niña event [Nicholls, 

1981; 1984; Ropelewski and Halpert, 1996; Haylock and McBride, 2001; McBride et al., 

2003]. Therefore, the SST and SSS of Indonesian seawater should strongly reflect 

ENSO variability on the interannual timescales. Furthermore, the weakened ITF 

transport of relatively warm, fresh surface water during El Niño events [Clarke and Liu, 

1994; Meyers, 1996; Potemra et al., 1997; Gordon et al., 1999] should also add to the 

ENSO signal of the ITF. 

 

Figure 8.4 Oceanic currents around Sumba, including the South Java Current (SJC, blue double headed arrow) and 

outflows of the Indonesian Throughflow (ITF, blue arrows). The red star marks the study area on the north coast of 

Sumba adjacent to the southern side of the Sumba Strait. 

The oceanographic setting suggests that SST and SSS in the Sumba Strait could actually 

reflect the mean climate state of the broader region, including the maritime continent 

which makes up the central and major part of the Indo-Pacific Warm Pool. The 

interannual variabililty of the Sumba SST and SSS should be efficient indexes for 
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recording ENSO events, especially in the winter dry season. 

Sumba is also located in the pathway of the annual migration of Asian-Australian 

monsoon centre of atmospheric convection (Intertropical Convergance Zone, ITCZ). 

The ITCZ migrates southeastwards from the South Asian subcontinent (July) to Sumatra 

(November), Java (December), and on to Sumba / north Australia in January / early 

February [Meehl, 1987; Huang and Mehta, 2004; Chang et al., 2005]. Heavy rainfall 

and strong runoff from the Indonesian islands such as Sumatra and Java make the 

surface salinity near the coast up to 3 psu lower than in the open Indian Ocean [Wyrtki, 

1973]. The published data demonstrate a very warm, fresh surface layer in the coastal 

water where the salinity is 33.8 psu and much fresher than the Indonesian Banda Sea 

Water (salinity is 34.4 psu) [Fieux et al., 1994; Bray et al., 1997; Sprintall et al., 1999; 

Sprintall et al., 2000]. The reduced salinity gives rise to a cross-shore pressure gradient, 

driving a south-easterly baroclinic coastal jet along the Java-Sumatra island chain 

[Quadfasel and Cresswell, 1992]. The monsoonal winds, in turn, force an eastward or 

westward boundary current during the summer and winter, respectively. That is the 

formation of the semi-annually reversing South Java Current (SJC) (Figure 8.4). 

The South Java Current semi-annually reverses to south eastward flow which occurs 

around May and October-November through the propagation of coastal and equatorial 

Kelvin waves forced by westerly wind bursts during the monsoon transitions in the 

equatorial Indian Ocean [Quadfasel and Cresswell, 1992; Sprintall et al., 1999]. In 

summary, the changing monsoon winds and the variations of the freshwater flux from 

the Indonesian archipelago are responsible for the annual cycle of the flow, while the 

actual reversals between the seasons are strongly influenced by remote forcing through 

equatorial and coastal long waves from the central Indian Ocean [Quadfasel and 

Cresswell, 1992]. 

Even though early studies noted that the eastward flow of the semi-annually reversing 

SJC could reduce the transport of the ITF [Meyers et al., 1995], it had not been 

confirmed if the Indian Ocean water enter into the Indonesian seas through the Sumba 
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Strait. Recently, Molcard et al (2001) reported eastward flows in the Ombai Strait and in 

the Sumba Strait [Hautala et al., 2001] measured by current metres in December 1995, 

May 1997, and March 1998. Our analysis demonstrated that a reduction in 18O in the 

modern Sumba Porites coral could well record the incursion of the SJC into the Savu 

Sea around May (see Chapter 6) even though the coral 18O climatology does not record 

a local rainfall signal. However, analysis of the Sumba Holocene corals indicated that 

the coral 18O climatology can also record the local monsoonal signal in January and 

February along with the arrival of the SJC in May. Therefore the Termination II coral 

climatology might also contain information about the intensity of monsoon activity at 

that time. 

8.1.3 The Mondu raised reefs 

Sumba is situated at the southwest end of a tectonic inflexion where the Sunda Arc 

passes eastward into the Banda Arc. The island is an exposed part of the outer arc ridge 

produced by the active subduction of the Indian-Australian plates beneath the Pacific 

plate [Fitch and Hamilton, 1974]. Sumba is separated from Australia by the Java 

Trench-Timor Trough, and from the volcanic ridge of the Sunda-Banda island-arc to the 

north by an outer arc basin (the Savu Sea). The collision of the plates and the upheaval 

of the outer arc ridge result in the uplift of the palaeo-reefs and the formation of the 

flights of raised coral terraces on the north coast of Sumba. An exceptional 

1-million-year-long sequence of coral reef terraces has been reported at Cape Laundi 

(Figure 8.2) between sea level and an ancient patch reef 475 metres above sea level 

[Pirazzoli et al., 1991; Pirazzoli et al., 1993]. Using uranium-series and electron spin 

resonance dating, they deduced a local uplift rate of 0.49 m/kyr which remained almost 

constant during at least the last million years and, in any case, at least until the last 

interglacial period. They credited the possibility of dating of the very old fossil corals to 

the dry local climate, especially the pronounced winter dry season which tends to slow 

down the processes of diagenesis in fossil corals, leaving some of them almost 
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unrecrystallized after 600 ka. 

 

Figure 8.5 (A) Mondu V coral reef. Dotted line marks an erosion surface above the Mondu V coral reef.  (B) The 

half exposed large Porites coral MV03-A-2 which is still in growth position. 

Our research focussed on the area around Mondu village, about 10 km west of Cape 

Laundi, where extensive paleo-reef terraces are exposed between 0 m and 80 m above 

mean sea level (Figure 8.2). The Mondu raised reefs better developed than those at Cape 

Laundi between the same altitudes, possibly because of the gentler underwater slope, 

better nutrition and greater sedimentary output from Mondu River over the past 150 ka. 

Three major field investigations in 1995, 1998, and 2003 have been conducted in this 

area and a wealth of modern and fossil coral cores have been retrieved from the modern 

and raised reefs. These provide an excellent opportunity for reconstruction of climate 

and oceanography since MIS 6. 
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8.2   MATERIALS AND METHODS 

8.2.1 Coral sampling 

Four large Porites corals have been found in the steep wall of a deep valley 

1.5 km inland from the sea (Figure 8.5). The corals are 39 m above modern 

mean sea level and still in their original growth positions. An exceptionally 

well-preserved coral core, MV03-A-2c, has been retrieved from coral 

MV03-A-2, which is 1.2 m in diameter and 1.1 m in height. 

This 1.1 m long coral core was slabbed, ledged, and sub-sampled for isotopic 

analysis following a procedure developed by Gagan et al. [1994]. X-ray 

photographs of 7 mm thick coral slabs (Figure 8.6) were used to help to 

develop a chronology and as a guide for sub-sampling ledges along the axis 

of maximum growth. This coral has a relatively rapid skeletal extension rate 

of 16-20 mm/yr, which is typical for modern and Holocene Sumba Porites 

corals growing in shallow water. The well-preserved middle sections of this 

core were used to produce the palaeoclimate record and for U-series dating. 

Vigorous cleaning in a Milli-Q water bath beneath a powerful ultrasonic 

beam was applied to remove skeletal dissepiments and some surficial 

diagenesis [Gagan et al., 1994]. Sub-samples were milled every 0.5 mm 

along 2 mm thick ledges (white tracks in Figure 8.6), which corresponds to a 

resolution between weekly and fortnightly. 

Figure 8.6  X-ray photo of 7 mm slab from the MV03-A-2c core. The white lines with Roman 

numerals represent the sampling transects. Red circle marks a calcite patch. 

8.2.2 Coral preservation 

The coral slabs show excellent preservation under natural and UV light with 
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only one small patch of calcite which has been avoided by the sampling ledges (Figure 

8.6). X-ray diffraction analyses yielded 99% aragonite content for typical spots in the 

middle sections of the core. Inspection of petrographic thin sections confirmed there is 

no secondary aragonite. There is slight dissolution and traces of calcite overgrowths in 

some parts of the core, however the smooth septal walls and radial structure of aragonite 

fibres growing from centres of calcification indicate excellent preservation of this coral 

skeleton. Figure 8.7 shows the impressive similarity between this fossil coral and a 

modern Porites coral (RSM2b) living on a nearby reef, indicative of extraordinarily 

good preservation for a very old Porites coral that has been exposed to both submarine 

and subaerial environments for a long time. 

 

Figure 8.7 Optical microscopic image of petrographic thin-section of fossil coral MV03-A-2c (right) compared with 

image of a modern Porites coral RSM2b (left). Red bar represents 2 mm. 

8.2.3 Stable isotope measurements 

The coral 18O and 13C is measured by a Finnigan MAT-251 mass spectrometer 

coupled with an automated individual-carbonate reaction device (Kiel) at RSES, ANU. 

Approximately 200 μg aragonite sub-samples were reacted with two drops of 103% 

H3PO4 at 90°C for 12 minutes. CO2 gas enters the mass spectrometer for isotope 
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measurements after freezing H2O from the evolved H2O-CO2 gas in a liquid nitrogen 

trap system. The isotope ratios are reported in standard delta notation relative to Vienna 

Peedee Belemnite (VPDB) and calibrated via the NBS-19 calcite standard (18O = 

-2.20‰, 13C = +1.95‰) and the NBS-18 calcite standard (18O = -23.0‰, 13C = 

-5.0‰). Analytical precision for repeated measurements (n = 135) of 18O and 13C in 

NBS-19 during the fossil coral isotope analysis was 0.05‰ and 0.02‰ (1), 

respectively. 

For isotope measurements of the coral MV03-A-2c, every second sub-sample was 

measured, in the first instance, and then neighbouring sub-samples were measured for 

periods when skeletal isotopic composition changed rapidly and during the austral 

winters. 542 sub-samples were measured in core MV03-A-2c (excluding repeated 

sections between spliced ledges) to produce a 29-year-long record with an average 

sampling frequency of 19 samples per year. The resolution of the winter 18O record 

was increased to be fortnightly to ensure accurate measurement of the high 18O values 

in the winters, which is important for the accurate reconstruction of El Niño signals. 

The isotope data were converted from distance along the sampling transect to time by 

assigning 18O maxima to August 8, which is the average arrival-time of winter SST 

minima based on analysis of modern SST records [IGOSS, Reynolds et al., 2002]. The 

data were then linearly interpolating between the annual anchor points using 

AnalySeries [Paillard et al., 1996]. For convenience of comparison with modern and 

Holocene coral records, 26 equal intervals were assigned between two neighbouring 

winter 18O maxima for the MV03-A-2c, Holocene, and modern coral records. The 

fortnightly resolution of the chronology is close to the measurement resolution. 

8.2.4 U-series age determination 

Multiple sub-samples were used to determine the age of fossil coral MV03-A-2 and 

details about the age determination were given in Chapter 4. The U-series method 

[Edwards et al., 1986/87] was applied to obtain the U-series isotopic composition and 
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230Th ages of different sub-samples. Even though a well-preserved sub-sample indicated 

that the coral would be only slightly younger than the uncorrected age of 136.8 ka, a 

more reliable age could not be achieved by directly applying any of the recent 

correction models [Thompson et al., 2003; Villemant and Feuillet, 2003; Scholz et al., 

2004]. However, coral MV03-A-2 provided an excellent opportunity to explore the 

diagenetic behaviour of U-series isotopes in corals because it experienced two 

recognisable stages of post-depositional alteration. Detailed analysis of the U-series 

isotopes showed that both styles of diagenetic alteration are different from those 

suggested before, but model correction ages could be achieved from either process and 

they produced essentially the same age of 133.6 ka. The age determination was also 

supported with evidence from local stratigraphic analysis combined with the published 

sea level curve and reef uplift rate. 

8.3  RESULTS 

8.3.1 Termination II coral 18O and 13C 

Figure 8.8 displays the high-resolution records of coral 18O and 13C. Both of them 

exhibit clear annual cycles which are comparable with the local modern and Holocene 

records (Chapters 6, 7), suggestive of excellent preservation considering its old age. 

The slightly lower 18O values in years 6 and 7 probably result from the impact of the 

small calcite patch, even though it was avoided when sub-sampling and no calcite could 

be observed on the ledge under UV light. Previous studies have demonstrated the 

addition of calcite via meteoric water diagenesis would negatively shift coral 18O and 

13C [Stein et al., 1993; Zhu et al., 1994; Wei et al., 1998; McGregor and Gagan, 2003]. 

This Sumba coral result indicates that coral 18O is sensitive to even trace amounts of 

calcite and might be more sensitive than 13C. It also confirms the pristine condition of 
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most of the coral 18O and 13C record for MV03-A-2. 
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Figure 8.8 High-resolution 18O and 13C time-series for Sumba Porites coral MV03-A-2 which grew at 133.6 ka 

during an early highstand in Termination II. Curves are fortnightly records and horizontal lines represent mean values 

(red for 18O, blue for 13C). 

The MV03-A-2 coral 18O record has a mean value of -4.39‰ ± 0.03‰ (2 standard 

error)and the 2 standard deviation is 0.17‰. When the first 6.5 years were excluded 

due to slight alteration in year 6, the 18O has a mean of -4.38‰ ± 0.03‰ (2standard 

error)and the 2 standard deviation is 0.15‰. The coral 13C has a mean of -1.19‰ ± 

0.08‰ (2standard error) and the 2 standard deviation is 0.45‰.  

8.3.2 Comparison with modern and Holocene records 

Three major features for this Termination II coral records could be easily recognized in 

comparison with the local modern and Holocene coral records: 

1. Higher mean 18O during Termination II 
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Figure 8.9 shows a remarkable difference of 0.6‰ between the mean 18O values for 

the Termination II coral and the Holocene / modern corals from reefs within 2 km of the 

Termination II coral (Figure 8.2). The replicate corals for the Holocene show a 

compelling consistent mean value of 5.0‰ (also see Table 8.1). The Termination II 

coral displays a difference of 1-1.2‰ from the modern coral 18O, which is much larger 

than any difference that could be attributed to analytical uncertainties in coral 

palaeoclimatology. 

0 ka
RSM2b/SU1

3.7 ka
MS7

4.8 ka
RS5b

5.7 ka
BS3a

  4    8    12    16    20  

Nominal year
   4     8     12     16     20     24     28     32     36     40     44     48     52     56  

Calendar year
   64     68     72     76     80     84     88     92     96  

-6.0

-5.8

-5.6

-5.4

-5.2

-5.0

-4.8

-4.6

-4.4

-4.2

-4.0

  4    8    12    16    20    24    28  

1
8 O

 (
pe

r 
m

il)

-6.0

-5.8

-5.6

-5.4

-5.2

-5.0

-4.8

-4.6

-4.4

-4.2

-4.0

  4  

133.6 ka
MV03-A-2c

 

Figure 8.9  Comparison of 18O records between the Sumba Termination II coral and local Holocene and 

modern corals. Various coloured thin curves and straight lines are linear detrended fortnightly records and their means 

(SU1 and BS3a records are not detrended due to their short range). Grey dashed control lines represent 2 standard 

deviations which show the magnitude of variability of the coral records. Note that the winter enriched 18O peaks 

going beyond the lower control lines represent cooler and more saline seawater which usually reflects the impact of 

an El Niño event (refer to Chapter 6 and 7). 

2. Suppression of cold/saline events in winter during Termination II 

Figure 8.9 demonstrates that there is a dramatic decrease in the frequency of cold and 

saline events in austral winter. In the 29-year Termination II coral record, there were 
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only 6 years when the winter 18O went beyond the 2 control line, which means that 

only 21% of the winters recorded a cold and saline event. In contrast, all the Holocene 

and modern corals recorded much more frequent cold and saline events. In all cases, 

more than 30% of the years record cold/saline events; 43% at 4.8 ka (9 events in 21 

years), 31% at 3.7 ka (17 events in 57 years), and 35% in modern times (13 events in 37 

years) (Table 8.1). 

Table 8.1 

Comparison of coral 18O records and insolation between the Termination II and modern/Holocene 

Period Modern Holocene Termination II 

Core RSM2b SU1* MS7 RS5b BS3a* MV03-2c 

Age (ka) 0 0 3.7 4.8 5.7 133.6 

18O mean (‰) -5.4 -5.6 -5.0 -5.0 -5.0 -4.4 

Detrended 18O range of variability (‰) 0.59  0.60 0.61  0.48 

Seasonal range of 18O climatology (‰) 0.35  0.39 0.40  0.31 

18O change from autumn to winter (‰) 0.35  0.39 0.40  0.22 

Number of winters included in coral 18O records 37 11 55 21 5 29 

Number of cold/saline events (beyond 2 line) 13  17 9  6 

Percentage of cold/saline winters (%) 35  31 43  21 

Insolation seasonality (W/m2) 114 114 117 114 110 127 

Insolation change from autumn to winter (W/m2) 4 4 16 20 22 45 

* No detrended record or average climatology was calculated due to the short length of 18O records for SU1 and 

BS3a corals. 

3. Weaker seasonality of 18O during Termination II 

Figure 8.9 clearly shows the smaller annual amplitude of 18O variability for the 

Termination II coral (20% decreased in variability relative to the modern/Holocene 

records). Also, the stacked coral 18O climatology shows the remarkably weaker 

seasonality of the Termination II record: the seasonality of the climatology is 11% to 22% 

weaker relative to the modern/Holocene coral records (Table 8.1). When comparing the 

magnitude of change from austral autumn (May) to winter (August), the magnitude of 

change for the TII coral 18O is more than 50% greater than the autumn-winter shift in 

local Holocene and modern 18O records (55%, 56%, and 63% respectively, see Figure 
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8.10 and Table 8.1). 

The notable fact is that, even though several recently published coral records have 

confirmed the control of solar insolation on coral 18O seasonality [Suzuki et al., 2001; 

Felis et al., 2004; Sun et al., 2005; Ayling et al., 2006], the decrease of 18O seasonality 

of Sumba coral records has nothing to do with the change of insolation seasonality 

because it shows a totally adverse change of large scope of increase (Table 8.1). Figure 

8.11 displays the seasonality of the insolation in Sumba since the penultimate 

deglaciation. 
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Figure 8.10  Comparison of the stacked climatologies of coral 18O (A) and 13C (B) for the Termination II, 

Holocene and modern corals. Black curves with dots are the Termination II records, while red, blue, and grey curves 

are modern, 3.7 ka, and 4.8 ka records, respectively. Thin vertical bars represent 2 errors of the stacked records. 

4. 18O decrease in austral spring during Termination II 

Comparison of the coral 18O climatologies of the Termination II, Holocene, and 

modern records shows that the most striking feature of the Termination II record is the 
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dramatic decrease in 18O during austral spring. Even though all the Sumba coral 

climatologies consist of two distinct stages: a relatively long, low-value stage in 

November-May (7 months) and a shorter high-value stage in July-September (3 months), 

the shape of the Termination II climatology is different (Figure 8.10). During 

Termination II, the low-value stage started in October, one to two months earlier than in 

the modern/Holocene records. The 18O values in October-January were also 

dramatically lower relative to values in summer and autumn (February to May) in 

comparison with the modern/Holocene records. During termination II, as much as one 

third of the 18O seasonality is confined to the relatively short period from October to 

January. 
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Figure 8.11 Comparison of daily top of atmosphere insolation at 0 ka (red curve), 3.7 ka (blue curve), 4.8 ka (grey 
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8.4  DISCUSSION 

8.4.1 SST and seawater 18O during Termination II 

Even though there are reports that mean 18O differs among different coral colonies 

[Guilderson and Schrag, 1999; Linsley et al., 1999], recent studies have shown good 

replication of skeletal 18O records (< ±0.15‰, 2) extracted from modern and fossil 

Porites colonies when rigorous coral cleaning and micro-sampling protocols are applied 

[Gagan et al., 1998; Cobb et al., 2003; Watanabe et al., 2003; Sun et al., 2005]. 

Therefore, the mean value of 18O of massive Porites corals from same site has been 

used to assess the mean climate and sea level [e.g.: McCulloch et al., 1999; Sun et al., 

2005]. The Holocene Porites corals from Sumba show remarkably consistent mean 18O 

values (-5.0‰) even though their ages differ by up to 2 ka and they are up to 6 km apart. 

Moreover, the two modern corals only display a difference of 0.15‰ for the same 

time-period even though coral SU1 is a very young colony of 11 years and located close 

to shore. Accordingly, the distinct differences between the mean 18O values of the 

Termination, Holocene and modern coral records can be used to determine the mean 

climate in which the corals grew, and cross-check the age and sea level of the coral 

growth. 

In Chapter 6, it was argued that the rapid-growing low-density band of the Sumba 

modern coral resulted from the abundant input of terrestrial nutrition which results in 

much depleted coral 13C at the time of low-density band formation. The extremely low 

13C value in the coral climatology during peak monsoon time (January-March, Figure 

8.10B) further confirms the near shore and shallow seawater environment. Furthermore, 

Pirazzoli et al. [1991; 1993] have deduced a local uplift rate of 0.49 m/kyr which 

remained almost constant during at least the last million years and, in any case, at least 

until the last interglacial period. Given the current altitude of 39 m above the mean sea 

level of this fossil coral and a -14 m to -18 m sea level during the early highstand of 
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Termiantion II [Esat et al., 1999; Thompson and Goldstein, 2005], the growth depth of 

this coral could be -8 m to -12 m. Therefore, deriving a sea surface temperature from 

this shallow seawater coral should be reasonable. 

The difference of 0.4-0.6‰ between Holocene corals and modern corals has been 

generally found around the Indo-Pacific warm pool [e.g.: Gagan et al., 1998; Gagan et 

al., 2002; Sun et al., 2005]. Sun et al. [2005] attributed the difference mostly to the 

differential local seawater 18O value since the differences in SST and ice volume 

between mid-Holocene and the present time are not significant and should only result in 

less than ~0.1‰ of the 18O enrichment. Our measurement of Sr/Ca ratios for the Sumba 

coral also shows no significant difference in SST between the mid-Holocene and 

modern time (see Appendix D). Therefore, we can estimate the mean SST during the 

early highstand of Termination II using the sea-level curve to place constraints on 

seawater 18O values. 

Table 8.2  

Summary of difference in sea surface temperature (SST) 

Sea-level shift between 

glacial-interglacial: 

125 m $ 

18O shift owing to sea-level shift * 0.8 1 1.2 1.3 

shift rate of 18O (‰/m) 0.0064 0.008 0.0096 0.0104 

Sea-level estimate for 

early highstand of TII: 

-14 m # 

Sea-level composition in18O shift (‰) 0.09 0.11 0.13 0.15 

SST component in 0.6‰ shift in 

Sumba coral between TII and 

Holocene 

18O (‰) 0.51 0.49 0.47 0.45 

SST (oC) 2.7 2.6 2.5 2.4 

Sea-level estimate for 

early highstand of TII: 

-18 m ^ 

Sea-level composition in18O shift (‰) 0.12 0.14 0.17 0.19 

SST component in 0.6‰ shift in 

Sumba coral between TII and 

Holocene 

18O (‰) 0.48 0.46 0.43 0.41 

SST (oC) 2.6 2.4 2.3 2.2 

* The shift in 18O attributed to ice volume between the LGM and the present is 0.8-1.0‰, 1.2-1.3‰, or 0.8-1.2‰ 
according to Schrag et al. [1996] , Fairbanks et al. [1989], or Lea et al. [2006], respectively. 
$ The sea-level shift between the LGM and the present was 125 m following McCulloch et al. [1999] for convenience 
of comparison. 

# The sea level at the early highstand of Termination II was -14 m based on Esat et al. [1999] and Stirling et al. 
[1995]. 

^ The sea level at the early highstand of Termination II was -18 m ± 3 m or -18 m ± 1.6m according to Gallup et al. 
[2002] or Thompson and Goldstein [2005], respectively. 
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Table 8.2 shows the calculated estimates of the sea surface temperature (SST) using 

published data for the shift in seawater 18O shift between the glacial and interglacial 

[Fairbanks, 1989; Schrag et al., 1996; Lea et al., 2006] and sea-level estimates during 

the early highstand of Termination II [Stirling et al., 1995; Esat et al., 1999; Gallup et 

al., 2002; Thompson and Goldstein, 2005]. Many authors have confirmed that the SST 

in mid-Holocene is within 0.5oC of the modern SST and that the 18O of surface 

seawater in the warm pool region is much lower today relative to the early Holocene 

[e.g.: Gagan et al., 1998]. Therefore, we think that the surface seawater 18O value at 

133.6 ka is different from that in modern time due to hydrologic processes unrelated to 

the ice volume shift. Sun et al. [Sun et al., 2005] suggested that the factors of 

enrichment of 18O in seawater during the middle Holocene include greater advection of 

moisture towards the Asian landmass, enhanced monsoon wind-induced evaporation 

and vertical mixing, and/or invigorated advection of 18O-enriched saltier outside 

seawater into the study area. Therefore, the seawater 18O during the early highstand of 

Termination II is more likely close to the Holocene value, so we have calculated the 

Termination II SST relative to the middle Holocene. 

The result indicates a decrease in SST of ~2.2-2.7oC during Termination II, relative to 

the average Holocene SST, if the uncertainties in sea level (-14 m or -18 m) and 18O 

shift between glacial-interglacial (0.8-1.0‰ or 1.2-1.3‰) are both included. The 

2.2-2.7oC cooling during the early highstand of Termination II implies substantial 

cooling of the tropical ocean surface when the sea level was only -14 to -18 m lower 

than today. Even though many studies have suggested a cooling of 1-4oC of the tropical 

Pacific ocean surface during the last glacial period [CLIMAP Project Members, 1976; 

Lyle et al., 1992; Pelejero et al., 1999; Crowley, 2000; Lea et al., 2000; Lea et al., 2006], 

more extreme cooling of 5-6oC in tropical SST is supported by terrestrial and coral 

Sr/Ca evidence [Rind and Peteet, 1985; Guilderson et al., 1994; Stute et al., 1995; 

Thompson et al., 1995; McCulloch et al., 1996; Beck et al., 1997; Guilderson et al., 

2001]. The coral Sr/Ca results of McCulloch et al. [1999] even suggested a 6-7oC 

cooling in the warm pool when the sea level during a late lowstand of Termination II 
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was 60-80 m lower than today. Our result supports a significant shift of SST in the 

tropical warm pool during glacial-interglacial cycles. 

8.4.2  El Niño variability during Termination II 

The large SST shift in the Indo-Pacific warm pool at 133.6 ka relative to modern and 

Holocene provides a good opportunity to examine the El Niño phenomenon under the 

influence of an altered background climate state [Cane, 2005]. 
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Figure 8.12 The dominant control of ENSO and signature of the IOD on winter 18O in modern Sumba coral RSM2b. 

(A) The fortnightly coral 18O record with annual maxima in austral winters (around August). White circles indicate 

the winter mean 18O values. Shaded areas mark El Niño years based on the definition of Trenberth (1997). (B) Red 

curve with circles represents the winter averages (July to September) of the detrended coral 18O record (long-term 

trend and decadal variability removed). Blue and grey-shaded bars are 11-month smoothed NINO3.4 and Indian 

Ocean Dipole Mode Index (DMI). Data sources: NINO3.4 index and ISMR from Lamont-Doherty Earth Observatory 

data sets at http://iridl.ldeo.columbia.edu/SOURCES/.Indices/.nino/.EXTENDED/.NINO34/ [Kaplan et al., 1998], 

and the DMI from Saji’s personal webpage at http://iprc.soest.hawaii.edu/%7Esaji/dmi.txt [Saji et al., 1999]. 

A strong correlation between the 18O-enriched winters in the Sumba coral 18O and the 

NINO3.4 index has clearly confirmed a link between the climate of Sumba and El Niño 
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events (Chapters 6, 7). Figure 8.12 shows that all 10 El Niño events (13 years) from 

1962 to 1998, as defined by Trenberth [1997], have been recorded by the Sumba coral 

as anomalously high 18O values during winter. With only two exceptions in the 37 year 

record (1967, 1985), the Sumba winter 18O values are very good recorders of ENSO 

events. The obvious exception in 1967 is related to a positive Indian Ocean Dipole (IOD) 

event (refer to Chapter 6) and the minor exception in 1985 might be connected with the 

mid-1980s cooling of background temperature. Spectral analysis of the seasonal coral 

18O record confirms that the modern Sumba winter coral 18O has a dominant ENSO 

period of 3.6 years (Chapters 6 and 7). 

In order to develop a local index of ENSO activity recorded by Sumba corals, the 

2-sigma standard deviation of the detrended coral 18O is used to identify El Niño 

events. Applying this technique to the modern coral record shows that 13 of the 37 

winters from 1962 to 1998 are El Niño winters (Figure 8.12), which is consistent with 

the definition of Trenberth [1997]. Only one exception in 1967 is related to a positive 

IOD event. Therefore, we could use the number of the cold/saline winters to compare 

the frequency of El Niño activity among the fossil coral records. 

The significant decrease in the number of 18O-enriched winters in the Termination II 

coral record (Figure 8.9, Table 8.1) indicates a significant decrease in the frequency of 

El Niño events during the early highstand of Termination II. Overall, the results show a 

decrease in El Niño activity at 133.6 ka relative to modern time (40% decrease), 3.7 ka 

(32% decrease), and 4.8 ka (51% decrease). 

The Sumba Termination II coral 18O climatology also strongly supports a significant 

decrease in El Niño activity at that time. Since the winter coral 18O reflects the impact 

of El Niño events, the 18O shift in the climatology from austral autumn to winter 

should be proportional to the activity of El Niño if the factors controlling coral 18O in 

autumn are assumed to be constant. In Chapter 6 and 7 it has been argued that the 

autumn freshening in the Holocene and modern coral records resulted from the 

penetration of a remotely forced tropical Indian Ocean Kelvin wave into the Savu Sea 
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during the monsoon transition in autumn, which moves warm and fresh surface water 

through the Sumba Strait. The magnitudes of this autumn peak in the Termination II, 

Holocene, and modern coral 18O climatologies are similar, suggesting a persistent input 

of Kelvin waves into the Savu Sea since Termination II. It is noteworthy that the 

magnitude of the shifts in coral 18O from autumn to winter during Termination II, 

Holocene and modern times exactly reflects the magnitude of the changes in El Niño 

activity given by the statistics of the winter cool/saline events (Table 8.1 comparing two 

lines of black bold numbers). The similarity demonstrates that the decrease in the 

autumn-winter 18O shift during Termination II mainly resulted from the decrease in El 

Niño activity. 

8.4.3  Monsoon intensity during Termination II 

Until now, most of the features of the Termination II coral 18O record have been 

reasonably explained except the significant depletion in 18O during late austral spring 

and early summer (October to February) relative to the rest of the Termination II 18O 

climatology (Fig. 8.10). At first, it was perplexing. I even suspected that it might result 

from the addition of small amount of calcite because that would slightly decrease the 

bulk coral 18O value. But when I removed years 1-7 (because years 6-7 shows impact 

of the calcite patch) and stacked a new climatology, the relatively low 18O peak is still 

there. Furthermore, the low 18O anomaly amounts to one-third of the range of the 18O 

climatology and, given that high percentages of calcite contamination would be required 

to produced such an anomaly, the coral 13C climatology should respond too. However, 

this is not the case (Figure 8.10B). In summary, the relatively low 18O values in 

October-February should not result from slight diagenetic alteration. 

The other possibility is that the low 18O anomaly is due to strong monsoonal rainfall 

from October to February during Termination II. The Holocene coral records suggest 

that monsoonal rainfall could have a small peak in January and a high peak in late 

January / February even though the modern corals do not record local monsoonal 
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rainfall (see Chapter 7). But the Asian-Australian monsoon peak migrates, on average, 

from India in July to north Australia in early February [Meehl, 1987; Huang and Mehta, 

2004; Chang et al., 2005], thus the November-December 18O peak in the Termination 

II record is too early for the local monsoonal rainfall effect. And the Termination II 

coral 13C climatology recorded strong local monsoonal rainfall in January to March, 

which is consistent with the timing of migration of the Intertropical Convergence Zone 

(ITCZ). Therefore, the low 18O anomaly in October-February during Termination II 

should not result from local monsoonal rainfall. 

However, further analysis of the coral 18O climatology shows that there might be a 

local rainfall peak during January-February which might have been partly masked by 

the low 18O anomaly in October-February. The decrease in the slope of the 18O 

climatology curve during late January-early February relative to the slope during 

January could be the manifestation of the local rainfall peak. This interpretation is 

supported by the Termination II coral 13C record, which implies a very strong local 

rainfall (Figure 8.10B). In chapter 6 it was argued that the depleted 13C peak in 

December-March resulted from the large input of terrestrial nutrition brought by the 

local monsoonal rainfall, and the small depleted 13C peak in May-June resulted from 

the decrease of the incoming radiation. Even though the intensity of the 

December-March peak is strongly impacted by the location of the coral relative to the 

Mondu River flood plume, some information on the rainfall could still be retrieved by 

the relative height of these two peaks. Figure 8.10B indicates a slightly shifted June to 

July peak which should result from the slight shift of the annual minimum in insolation 

from June to early July. It also shows a much larger ratio of the height of the two peaks 

in Termination II 13C relative to the Holocene and modern coral records and probably 

indicates a much stronger local monsoonal rainfall during January and February.  

In Chapter 7 we have shown that the local monsoonal rainfall at 4.8 ka is much stronger 

than at 3.7 ka and the present, so its coral 18O climatology shows a higher 

January-February peak relative to the April-May peak (Figure 8.10A). Analysis of the 
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January-February peak in the Termination II coral 18O climatology seems to show a 

much higher January-February peak relative to its April-May peak. Therefore, both the 

Termination II coral 18O and 13C climatology support an relatively strong local 

monsoonal rainfall, even stronger than that at 4.8 ka when the local monsoonal rainfall 

has been argued to be stronger than at 3.7 ka and the present (Chapter 7). 

Still, the question remains, what is the source of the relatively warm/fresh water during 

October-February? The only reasonable explanation is that the warm/fresh water was 

from the South Java Current (SJC) which must have penetrated further eastward into the 

Sumba Strait during the early highstand of Termination II. Given that monsoon winds 

and rainfall/river runoff are the two major forcing agents for the South Java Current 

[Quadfasel and Cresswell, 1992; Sprintall et al., 1999], the intensified monsoon at 

133.6 ka would have driven a much stronger SJC at that time. It is reasonable that the 

increased intensity of the SJC would be sufficient to make it penetrate the Sumba Strait 

and enter the Savu Sea. Unlike the May-June incursion of the Kelvin wave, the 

October-December Kelvin wave coincides with the annual rainfall maximum of the 

source areas of freshwater along the Sumatra-Java-Bali-Sumbawa coastline. 

Accordingly, the water taken into the Sumba Strait by the October-December Kelvin 

wave would be much fresher than the May-June Kelvin wave, and the coral 18O 

climatology would therefore record a much depleted 18O peak. 

The Sumba Termination II coral 18O rapidly shifts toward higher values after 

December, implying that the incursion of the SJC happens only when the remote 

tropical Indian Ocean Kelvin wave penetrates into the Savu Sea during the monsoon 

transition between October and December, not during the whole period of October to 

March when the SJC flows eastward. The October-December Kelvin wave only 

penetrated through Sumba Strait when the monsoon was extremely strong, while the 

May-June Kelvin wave can penetrate the Sumba Strait at all times (modern, 3.7 ka, 4.8 

ka, and 133.6 ka), which is consistent with the observation of Wyrtki [1973] that the 

semiannual Kelvin wave sea level signal associated with the October/December 
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monsoon transition is typically weaker. This observation has also been confirmed by 

Sprintall et al. [2000]. 

In summary, the warm/fresh anomaly in the Termination II Sumba coral 18O record 

during October-February should reflect a relatively strong monsoon during the early 

highstand at 133.6 ka. 

8.5  CONCLUSIONS 

A 29-year-long fortnightly-resolution 18O and 13C record was compiled for a 133.6 ka 

Porites coral from an early highstand of the penultimate deglaciation (Termination II) 

preserved within the Mondu raised reefs of Sumba, Indonesia. The massive coral is 

located at an altitude of 39 m above the mean sea level. U-series dating of a pristine part 

of this coral gave a conventional 230Th age of 136.8 ka with an initial 234U value of 

158.9‰, which suggests that the true age is slightly younger. Multiple analyses of 

sub-samples in the same coral suggest a model correction age of 133.6 ka, which shows 

that the coral grew during Termination II. Recent published results show that 133.6 ka 

coincides with an early highstand during the Termination II. 

The high-resolution isotopic record gave a mean 18O value of 4.4‰ at 133.6 ka, which 

is 0.6‰ higher than the local Holocene coral records, and 1.0-1.2‰ higher than the 

local modern coral records. Calculations based on the coral 18O shows that the mean 

SST at 133.6 ka was ~2.4oC lower relative to the middle Holocene SST. The seawater 

18O at 133.6 ka was probably similar to the enriched 18O value observed for the 

mid-Holocene, rather than the depleted modern warm pool 18O value. 

The high-resolution 18O record for the Termination II coral disclosed much less 

frequent El Niño events at 133.6 ka. Comparison between the TII record and 

Holocene/modern coral records demonstrate a dramatic decrease of 40% of El Niño 

events than the modern time, a 32% decrease relative to 3.7 ka, and a 51% decrease to 

4.8 ka. The smaller seasonality of the TII coral 18O has nothing to do with the local 
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insolation change, it mainly reflects the suppressed ENSO activity during 133.6 ka. The 

dramatic decrease in austral autumn-winter 18O shift mainly derives from the 

remarkably weaker El Niño. 

Both the high-resolution 18O climatology and the 13C climatology for the Termination 

II coral suggested an intensified Asian-Australian monsoon operated at 133.6 ka. 

Comparison with the local Holocene coral records shows that the Termination II 

monsoon was stronger than the generally accepted strong mid-Holocene monsoon. 

A striking warm/fresh anomaly during October-December in the coral 18O climatology 

suggests the routine incursion of Kelvin waves into the Sumba Strait during the two 

monsoon transition periods (May and November) at 133.6 ka. This is in contrast to the 

penetration of only the austral autumn Kelvin wave into the Sumba Strait in 

mid-Holocene and the modern time, which is consistent with an intensified 

Asian-Australian monsoon during the early highstand of Termination II. 

The contrast of a stronger monsoon and weaker El Niño during the different background 

climate state of Termination II (lower SST, higher seawater 18O) provides a new 

perspective on the interactions between these climate systems. 
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The Indo-Pacific Warm Pool plays a key role in driving the global atmospheric 

circulation. Therefore, knowing the history of natural climate variability in this region 

during different background climate states would provide a better understanding of 

potential future changes in important climate systems such as the El Niño-Southern 

Oscillation (ENSO) and the Asian-Australian monsoon, which interact in this area and 

are of broad political and economic significance. Coral from the island of Sumba are 

well situated to record this climatic variability because they are strongly impacted by 

ENSO and in the migration path of the Asian-Australian monsoon convective centre. To 

this end, this PhD project utilized high-quality Porites coral cores from the Mondu 

raised reefs on the north coast of Sumba, Indonesia, to reconstruct the mean climate 

conditions, ENSO variability, and monsoon intensity during the Holocene and a 

sea-level highstand of the penultimate deglaciation (Termination II). The study involved 

detailed topographic surveys of the Mondu raised reefs, stratigraphic analysis, 

investigations of coral diagenesis, U-series age determinations and corrections, and the 

production of high-resolution records of coral 18O and 13C for palaeoclimate 

reconstruction. This chapter summarizes the key findings, based on the aims of this 

study, and provides general suggestions for future work in this area. 

9.1   SUMMARY OF KEY FINDINGS 

Aim 1: To date the Mondu raised reefs and important corals 

 Stratigraphic relationship and topographic features of the Mondu raised coral reefs 

have been disclosed by topographic survey and field observation. 

 54 samples from the raised reefs have been measured for U-series isotopic 

composition but almost any of them could not give a reliable conventional 230Th 

age for any of the reefs. However, most corals in a reef array along a straight line in 

the 234U/238U – 230Th/238U plot and the isochron model (SCHOLZ et al., 2004) could 
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be applied to correct the U-series ages of the Mondu raised reefs. This study shows 

the model ages are consistent very well with the stratigraphic relationships and 

features. 

 The assigned ages of the Mondu raised reefs include sub-stages of 5a, 5b, 5c, 5d, 

and 5e during MIS 5, an early-stage highstand of Termination II, an early-stage 

highstand of MIS 6, and a late-stage highstand of MIS 8, implying strong potential 

of the Mondu raised reefs for paleoclimate reconstruction. 

 Among the raised reefs, the 234U/238U – 230Th/238U plot displays distinct two groups 

of array lines and within each group the array lines are parallel to each other, but 

the group with older ages has larger slopes than the younger ones. Our stratigraphic 

analysis demonstrates that the slopes of the array lines reflect the burial/exposure 

history of the reefs, which has helped to determine the ages of some of the reefs. 

 This study supports a constant uplift rate of 0.49 m/kyr in the area for most of the 

time since 258 ka even though in MIS 5a the rate might have been slightly higher, 

and in MIS 5c it might have been lower. 

 Multiple measurements of U-series isotopes in skeletal sub-samples within a single 

Porites coral were made to explore the diagenetic behaviour of U-series isotopes in 

fossil corals from the Sumba raised reefs. Detailed analysis of two diagenetic stages 

and corresponding changes in U-series isotopic composition has revealed two 

distinct processes of U-series isotope diagenesis in this single coral colony. Both of 

them are different from those suggested before. The earlier-stage process 

demonstrates the addition of allochthonous dissolved 234U and 238U together with 

detrital non-radiogenic 230Th, while the later-stage process clearly shows that loss 

of 234U and 238U occurred along with detrital-bound 230Th. Locally radiogenic 230Th 

appears to have played an important role in maintaining a constant 234U/230Th as 

allochthonous U added when percolating groundwater with high 234U value 

entered into the coral, while detritus-bound 230Th was critical to maintain a fixed 
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234U/230Th when percolating meteoric water dissolved coral skeletal U. The results 

strongly suggest that a mechanism like diffusion or osmosis controls the addition or 

loss of dissolved U and detrital Th into or out of the coral by way of a solute 

concentration gradient. This mechanism explains the constant 234U/230Th ratios in 

either situations of the addition or loss of U. Model correction ages could be 

determined for both processes and they yield essentially the same age of 133.6 ka. 

This detailed study agrees with the published isochron model (Scholz et al., 2004) 

on their way of achieving the isochron age, but provides a further observation and 

explanation on the way of maintaining the 234U/230Th ratio roughly constant as 

either the addition or loss of U happens. 

 Stratigraphic analysis demonstrates that this kind of mechanism for U-series isotope 

diagenetic behaviour could reflect the relative ages of the Mondu raised coral reefs 

and their history of burial and exposure. 

Aim 2: To explore the climatic and oceanographic significance 

of Sumba coral 18O and 13C 

 Reproducibility experiences have shown good consistency of the Sumba coral 18O 

and 13C between different axes of growth of one single coral colony and different 

corals from the Mondu modern coral reefs. 

 This study demonstrates that the Sumba modern corals are excellent recorders of 

modern climate and oceanography in the Indo-Pacific warm pool. High-resolution 

(fortnightly) time series, stacked climatology, and seasonal means have been 

characterised for both the modern coral 18O and 13C. Detailed analysis on 

correlation of these features with local instrumental records, and main climate 

system indexes such as NINO3.4 index, All India Summer monsoon rainfall, and 

the Dipole Mode Index have been conducted. Blackman-Tukey spectra of annual 

and seasonal coral 18O and 13C characteristics and their cross-spectra with the 



PhD Thesis: Coral Reconstruction of Late Quaternary Climate in the Warm Pool 

Ding-Chuang QU, May 2009                                                                          255 

above-mentioned climate system indexes have also been carried out. The strong 

correlations and spectral connections demonstrate that the ENSO, Asian-Australian 

monsoon, and remote equatorial Indian Ocean forcing all have strong influence on 

the local climate and oceanography and the high-resolution coral 18O record from 

Sumba, Indonesia could disassemble the entangled climate system signals of the 

ENSO, Asian-Australian monsoon, and remote equatorial Indian Ocean forcing 

agent in an encouraging scale and helps in understanding the climate and 

oceanography in this area.  

 The Sumba coral 18O record shows the dominant control of ENSO in austral 

winter and that the interannual variability of the winter 18O could serve as a good 

index for ENSO events. In austral summer (November through February), the coral 

18O is overwhelmingly controlled by the tropical Indian Ocean forcing, while in 

autumn (March to May), the monsoon and remote equatorial Indian Ocean forcing 

both have strong impacts on the Sumba coral 18O.  

 The high-resolution Sumba modern Porites coral 18O record provides evidence of 

routine penetration of the South Java Current (SJC) into the Savu Sea in austral 

summer, and remote forced equatorial Indian Ocean Kelvin wave in autumn, which 

results in distinct freshening of the ocean surface during the austral autumn. By 

sensitively recording variability of sea surface temperature and salinity in this 

important exit of the Indonesian Throughflow (ITF), the Sumba coral 18O revealed 

active oceanic current activity in Sumba Strait. In austral winter, the current in the 

Sumba Strait is generally westward and the ITF brings Indonesian Inner Seas water 

with a Pacific source of moderate salinity.  In summer, relatively saline SJC water 

enters the Suva Sea from the west until the current decreases in intensity around 

March. After March, two processes gradually lower salinity. On the one hand, the 

gradual weakening of the SJC owing to weakening monsoon winds might reduce 

the penetration of the SJC into the Sumba Strait. On the other hand, the arrival of 

the remotely forced Kelvin wave during April to June (during the monsoon 
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transition) would generate eastward flow into the Strait and result in a sudden 

freshening of the Savu Sea.  It is possible that this input of Indian Ocean water 

into the Savu Sea by the summer SJC and autumn Kelvin wave could have 

significantly influenced the transport of the Indonesian Throughflow.  

 The Sumba 13C shows clear annual cycles and recorded a distinct depletion in 13C 

during the austral summer time (December to March). Our result shows it results 

from the large input of terrigenous nutrients linked to local heavy summer 

monsoonal rainfall. A consistent annual maximum during early October in the coral 

13C is supposed to be linked with the maximum of the local incoming short-wave 

radiation. 

 Unique density banding in the Sumba modern coral is presented. There are two 

high-density bands and two low-density bands in a certain year. Detailed study on 

the banding and the correlation with the high-resolution 13C record indicate that 

the unique low-density band in summer resulted from the largely increased 

availability of terrigenous nutrients connected to the heavy rainfall during the 

north-west monsoon season. Unlike the coral 13C, during off-rainfall season the 

coral density banding is more related to the ambient seawater temperature, rather 

than the local incoming short-wave radiation. 

 Long-term trends have been shown in both the coral 18O and 13C records. The 

increased global warming has been attributed to the 18O trend and both the 

warming and the oceanic Suess effect have been attributed to the long-term trend of 

depletion in 13C. Substantial decadal variability has been found in both the coral 

18O and 13C records, and they are usually linked with the change in background 

climate and oceanography. Variation in input of warm, low-salinity water from the 

SJC into the Savu Sea in decadal time scale would also add to the decadal 

variability of the coral 18O, such as that in the early 1990s. Large decadal 

variations in sea surface temperature and salinity in the Savu Sea have been 
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proposed and the variability is supposed up to 0.3℃  and 0.5 ups. Salinity 

variability in the Savu Sea during 1962 to 1998 has been reconstructed and a 

remarkable increase in 1974 to 1989 and rapid recover in 1989-1998 has been 

identified. 

 The annual climatology of coral 18O and 13C is a very effective means to simplify 

and recognize the forcing agents for the variability of the records, especially in an 

area like Indonesia with entangled multi-systems of climate and oceanography. 

Aim 3: To reconstruct Holocene climatic variability 

 4 high-resolution Holocene coral 18O and 13C records have been extracted from 

the Sumba Strait, Indonesia, where the Asian-Australian monsoon, ENSO, and the 

remote equatorial Indian Ocean forcing have strong impacts on the local climate 

and oceanography. Climatology of these coral records has been reconstructed, and 

the magnitude and periodicity of the interannual variability of the coral records 

have been achieved. Strong seasonal variation in the association between the 

Sumba coral records and the three prevailing climate phenomena has been found, 

which helps to partly disentangle the three intertwisted climate systems and makes 

it possible to reveal the variation of the individual climate systems since 

mid-Holocene. 

 Both the coral 18O and 13C record a weakening monsoon since 5.7 ka. The 

monsoon was very strong in 5.7 ka and 4.8 ka, but evidently weaker in 3.7 ka. The 

modern time seems to have a weakest monsoon among the 4 periods of Holocene.  

 Comprehensive analysis of the mean climatology, the magnitude and periodicity of 

the interannual variability of the coral 18Os indicates a very strong ENSO in 4.8 ka, 

a very weak ENSO in 3.7 ka, and a moderate intensity of ENSO in the present time. 
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 This coral evidence for variation in the Asian-Australian monsoon and ENSO is 

consistent with previous findings from a Chinese speleothem 18O evidence for 

evolution of Asian monsoon (WANG et al., 2005) and a Peruvian lake sediment 

evidence for ENSO evolution (MOY et al., 2002) (Figure 6.8C). 

 The Sumba coral 18Os also record a variation in the equatorial Indian Ocean 

forcing since mid-Holocene: in comparison with the monsoon and ENSO, the 

remote equatorial Indian Ocean forcing was very weak in 4.8 ka, very strong in 3.7 

ka, and moderate in modern time. 

 The Sumba corals provide a historical perspective to understand the evolution and 

interplay of the three complicatedly intertwisted climate phenomena which are all 

of global importance. The high-resolution windows illustrate climate scenes 

distinctly different from the modern time in the relative intensity and variability of 

the three climate components in one specific location.  

Aim 4: To reconstruct climate variability during background 

conditions distinct from the Holocene and present 

 29 years of record of fortnightly-resolution 18O and 13C was compiled for a 

Porites coral of Sumba, Indonesia. The massive coral is from a raised fossil reef 

with an altitude of 39 m above the mean sea level. U-series dating of a pristine part 

of this coral gave a conventional 230Th age of 136.8 ka with an initial 234U value of 

158.9‰, which suggests that the true age is slightly younger. Multiple analyses of 

sub-samples in the same coral suggest a model correction age of 133.6 ka, which 

shows that the coral grew during Termination II. Stratigraphic relationships and 

local uplift rate analysis on the Mondu raised reefs also support this age 

determination. Recent published results show that 133.6 ka coincides with an early 

highstand during the Termination II. 
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 The high-resolution isotopic record gave a mean 18O value of 4.4‰ at 133.6 ka, 

which is 0.6‰ higher than the local Holocene coral records, and 1.0-1.2‰ higher 

than the local modern coral records. Calculations based on the coral 18O shows 

that the mean SST at 133.6 ka was ~2.4oC lower relative to the middle Holocene 

SST. The seawater 18O at 133.6 ka was probably similar to the enriched 18O value 

observed for the mid-Holocene, rather than the depleted modern warm pool 18O 

value. 

 The high-resolution 18O record for the Termination II coral displayed a dramatic 

40% decrease in the frequency of El Niño events, relative to the modern-day 

frequency. 

 Both the high-resolution 18O climatology and the 13C climatology for the 

Termination II coral suggested that an intensified Asian-Australian monsoon 

operated at 133.6 ka. Comparison with the local Holocene coral records shows that 

the Termination II monsoon was stronger than the generally accepted strong 

mid-Holocene monsoon. 

 A striking warm/fresh anomaly during October-December in the coral 18O 

climatology along with the May-June fresh anomaly suggests the routine incursion 

of Kelvin waves into the Sumba Strait during both the two monsoon transition 

periods (Autumn and spring) at 133.6 ka. This is in contrast to the penetration of 

only the austral autumn Kelvin wave into the Sumba Strait in mid-Holocene and the 

modern time, which is consistent with an intensified Asian-Australian monsoon 

during the early highstand of Termination II which should have intensified the 

eastward flow of the SJC with a much fresher water owing the very strong monsoon 

rainfall along the Indonesia coast. 

 The contrast of a stronger monsoon and weaker El Niño during the different 

background climate state of Termination II (lower SST, higher seawater 18O) 

provides a new perspective on the interactions between these climate systems.. 
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9.2 FUTURE WORK 

This study has demonstrated that corals from the Mondu raised reefs of Sumba are 

excellent recorders of changes in the past ocean-atmosphere system in the Indo-Pacific 

warm pool, and serve to help us understand climates of the past and improve our ability 

to predict future climate change. Therefore, it is important to retrieve more climate 

records from these reefs, especially from those periods when the mean climate was 

distinct from the modern time. Even though retrieving high-resolution records is 

time-consuming, this study has demonstrated that high-resolution coral records are 

capable of providing seasonally resolved records of climate system variability that is 

very different from the variability at the present time, or during the middle Holocene. 

The long cores archived at RSES, ANU include corals from reefs dated to stadial 

sub-stages (e.g. MIS 5b) and even glacial periods such as MIS 6. Also, targeted drilling 

of high-quality cores from other reefs that were U-series dated in this study is another 

priority for future work, especially the reefs of MIS 5a-5d, 6, and even 8. 

Some corals and reefs still need to be definitively dated. Now that this study has 

demonstrated that the isochron model can be applied to accurately correct the ages of 

the Mondu raised reefs, dating multiple coral samples from the target reef or multiple 

sub-samples from the target coral would potentially give reliable ages. 

Even though Sr/Ca has been measured for the modern and Holocene Sumba corals, 

Sr/Ca is yet to be measured for the Termination II coral. Finalizing these measurements 

and analysing Sr/Ca in more of the corals would be significant. Such measurements 

would be particularly helpful to further demonstrate that the Sumba coral 18O records 

the oceanic currents flowing through the Sumba Strait. High-resolution accelerator mass 

spectrometer measurements of 14C in the coral skeletons would also shed light on ocean 

circulation patterns. 

The detailed correlation between coral 13C and density banding has revealed that an 

extremely low density band occurring at the time of maximum monsoonal rainfall 
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corresponds to an annual minimum in 13C which has been attributed to the input of 

terrigenous nutrients linked to local heavy summer monsoonal rainfall. Therefore, 

measurements of Sumba coral density variability might be an economical and efficient 

way to reconstruct the variability of the local summer monsoon. 
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APPENDIX  A 

CORAL CORES FROM SUMBA, INDONESIA 

     A.1 Coral cores drilled from 1995 field trip 

Reef Core Species 
Length 

(m) 
Sampling Date Comments 

River Site 
Holocene reef 

RS1 Porites  13-11-95 Good Quality 

RS2 Porites 0.5 13-11-95 Good Quality 
RS3a Porites  13-11-95  
RS3b Porites  13-11-95  
RS4 Porites 0.27 13-11-95  
RS5a Porites 0.22 13-11-95  
RS5b Porites  13-11-95 Good Quality 
RS6 Porites 0.17 13-11-95  
RS7 Porites  13-11-95  

Goat Site reef 

GC1 Porites  08-11-95  

GC2 Porites  08-11-95  
GC3a 

Porites 
 08-11-95  

GC3b  08-11-95  
GC4 Porites  08-11-95  
GC5a 

Porites 
 08-11-95  

GC5b  08-11-95  
GC6a 

Porites 

 08-11-95  
GC6b  08-11-95  
GC6c  08-11-95 Good Quality 
GC6d  08-11-95  
GC7 Porites  08-11-95  

Mondu I reef 

MI1a 

Porites 

0.52 04-11-95  

MI1b 0.49 04-11-95  

MI1c 0.52 04-11-95  

MI2a Porites 
Porites 
Porites 

0.52 04-11-95  

MI2b 0.12 04-11-95  

MI2c 0.05 04-11-95  

MI3a 

Porites 

0.52 04-11-95  

MI3b  04-11-95  

MI3c 0.48 04-11-95  

MI4 Porites  04-11-95  

MI5 Porites  04-11-95  

MI6a 
 
Porites 
 

0.49 04-11-95  

MI6b 0.47 04-11-95  

MI6c 0.50 04-11-95  

MI6d 0.54 04-11-95 Good Quality 

Mondu II reef 

MII1 Porites  05-11-95  
MII2a Porites 0.21 05-11-95  
MII2b Porites 0.28 05-11-95  
MII2c Porites 

Porites 
Porites 
Porites 

0.51 05-11-95 Good Quality 
MII2d 0.50 05-11-95  
MII3  05-11-95  
MII4  05-11-95  
MII5 Porites  05-11-95  
MII6 Porites  05-11-95  
MII7a Porites 27 05-11-95  
MII7b Porites 22 05-11-95  
MII8 Porites 

Porites 
 05-11-95  

MII9a 0.38 05-11-95  
MII9b Porites 0.41 05-11-95  
MII10 Favites  05-11-95  
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   A.2 Coral cores drilled from 1998 field trip 

Reef Sample Species 
Length 

(m) 
Sections Sampling Date Comments 

Mutiara Site 

Modern reef 

MSM-1 Porites 1.3 3 11-11-98  

MSM-2A Diploastrea 1.1 3 11-11-98  

MSM-2B Porites 1.25 3 11-11-98  

MSM-3A Porites 2.97 9 12-11-98 Good Quality 

MSM-3B Porites 0.72 2 12-11-98  

MSM-3C Porites 0.7 2 12-11-98  

MSM-4A Diploastrea 1.06 3 14-11-98  

MSM-4B Diploastrea 1.14 3 14-11-98  

MSM-5 Diploastrea 0.7 2 15-11-98  

MSM-6 Porites 1.33 4 15-11-98  

MSM-7 Diploastrea 0.66 1   

River Site Modern 

reef 
RSM-1 Portes 0.99 2 12-11-98  

River Site 

Holocene reef 

RS2.2 Porites 1.52 3 06-11-98 Good Quality 

RS3.2 Porites 0.78 2 06-11-98  

RS4.2 Porites 0.88 2 07-11-98  

RS8 Porites 1.72 4 06-11-98  

RS9 Porites   07-11-98  

RS10 Porites 1.25 3 07-11-98  

RS11 Porites 0.76 3 07-11-98  

RS12 Porites 0.60 1 07-11-98  

RS13 Porites 1.75 4 09-11-98  

RS14 Porites 1.05 3 09-11-98  

RS15 Porites 1.09 2 09-11-98  

RS16 Porites 0.41 1 09-11-98  

RS17A Porites   25-11-98  

RS17B Porites 0.56 3 25-11-98  

Mutiara Site 

Holocene reef 

MS1a Porites 1.43 6 04-11-98  

MS1b Porites 2.17 8 05-11-98  

MS2 Porites 1.07 5 19-11-98  

MS3 Porites 0.81 2 20-11-98  

MS4 Porites 0.35 2 20-11-98  

MS5 Porites 0.4 2 20-11-98  

MS6A 
Diploastrea 

0.3 1 21-11-98  

MS6B 0.66 2 21-11-98  

MS7 Porites 1.12 2 21-11-98 Good Quality 

MS8 Porites 0.66 4 21-11-98  

MS9 Porites 0.85 2 21-11-98  

MS10 Porites 0.62 3 22-11-98  

Mondu I reef 
MI7 Diploastrea 0.53 3 07-11-98  

MI8 Diploastrea 0.47 2 08-11-98  

Mondu III reef 

MIII1 Diploastrea 0.43 2 23-11-98  

MIII2 Porites 0.64 4 23-11-98  

MIII3 Diploastrea 0.35 2 23-11-98  

Mondu IV reef 
MIV1 Diploastrea 0.36 2 23-11-98  

MIV2 Diploastrea 0.45 2 23-11-98 Good Quality 
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A.3 Coral cores drilled from 2003 field trip 

Reef Core Latitude Longitude Species 
Length 

(m) 
Sections 

sampling 

date 
Comments 

River Site 

Holocene 

reef 

RS03-1 9°27.339’S 120°4.383’E Porites 0.96 3 4-9-03  

RS03-2a 9°27.427’S 120°4.412’E Porites 0.35 1 4-9-03  

RS03-3a   Porites 0.45 1 5-9-03  

RS03-3b   Porites 0.9 5 5-9-03  

RS03-4 9°27.761’S 120°4.687’E Porites 1.35 7 5-9-03 Good quality 

Mutiara Site 

Holocene 

reef 

MS03-A-1 9°28.893’S 120°8.523’E Porites 0.72 3 14-8-03  

MS03-A-2    0.4 2 6-9-03  

MS03-B-1 9°29.079’S 120°7.434’E Porites 0.58 2 3-9-03  

Goat Site 

reef 

GC03-1a 9°29.33’S 120°7.285’E Porites 0.36 2 6-9-03  

GC03-1b 9°29.33’S 120°7.285’E Porites 0.95 4 6-9-03 Good quality 

Oasis reef 

OA03-1a 9°29.564’S 120°7.169’E Porites 0.29 3 14-8-03  

OA03-1b 9°29.564’S 120°7.169’E Porites 0.39 2 15-8-03  

OA03-1c 9°29.564’S 120°7.169’E Porites 1.79 9 15-8-03 Good quality 

OA03-2a 9°29.542’S 120°7.206’E Porites 0.51 1 16-8-03  

OA03-2b 9°29.542’S 120°7.206’E Porites 0.49 2 16-8-03  

OA03-2c 9°29.542’S 120°7.206’E Porites 0.35 1 16-8-03  

OA03-3a 9°29.547’S 120°7.193’E Diploastrea 0.1 1 16-8-03  

OA03-3b 9°29.547’S 120°7.193’E Diploastrea 0.8 3 16-8-03  

OA03-4 9°29.534’S 120°7.178’E Porites 0.38 2 16-8-03  

Mondu I reef 

MI03-1  9°29.379’S 120°5.879’E Porites   4-9-03  

MI03-C-1a 9°29.402’S 120°5.779’E Diploastrea 0.4 1 4-9-03  

MI03-C-1b 9°29.402’S 120°5.779’E Diploastrea 0.6 2 4-9-03  

MI03-C-1c 9°29.402’S 120°5.779’E Diploastrea 0.41 2 4-9-03  

MI-3-03a 9°29.413’S 120°5.868’E Porites 0.39 1 5-9-03  

MI-6-03 9°29.423’S 120°5.874’E Porites 0.61 2 5-9-03  

Mondu I 

West reef 

MI03-B-1a 9°29.377’S 120°5.756’E Diploastrea 0.43 2 22-8-03  

MI03-B-1b 9°29.377’S 120°5.756’E Diploastrea 0.46 2 22-8-03  

MI03-B-2a 9°29.343’S 120°5.78’E Porites 0.58 2 22-8-03  

MI03-B-3   Diploastrea 0.6 2 4-9-03  

Mondu IV 

reef 

MIV03-1 9°29.479’S 120°5.704’E Porites 0.43 2 21-8-03  

MIV03-2 9°29.497’S 120°5.717’E Porites 0.22 2 21-8-03  

MIV03-2b 9°29.497’S 120°5.717’E Porites 0.5 1 4-9-03  

Mondu V 

reef 

MV03-A-1a 9°29.518’S 120°5.785’E Porites 0.45 3 18-8-04  

MV03-A-1b 9°29.518’S 120°5.785’E Porites 0.54 3 18-8-03  

MV03-A-2a 9°29.521’S 120°5.786’E Porites 1.04 3 18-8-03 Good quality 

MV03-A-2b 9°29.521’S 120°5.786’E Porites 0.5 1 19-8-03  

MV03-A-2c 9°29.521’S 120°5.786’E Porites 1.09 3 19-8-03 Good quality 

MV03-A-3 9°29.521’S 120°5.786’E Porites 1.08 3 18-8-04  

MV03-B-1a 9°29.539’S 120°5.744’E Porites 0.62 3 20-8-03  

MV03-B-1b 9°29.539’S 120°5.744’E Porites 1.1 5 20-8-03  

MV03-B-2a 9°29.5’S 120°5.74’E Porites 0.74 4 20-8-03  

MV03-B-2b 9°29.5’S 120°5.74’E Porites 1.13 5 20-8-03 Good quality 

Mondu VI 

reef 

MVI03-1a 9°29.74’S 120°5.738’E Porites 0.28 1 1-9-03  

MVI03-1b 9°29.74’S 120°5.738’E Porites 0.14 1 1-9-03  

MVI03-2a 9°29.744’S 120°5.744’E Porites 0.53 4 1-9-03  

MVI03-2b 9°29.744’S 120°5.744’E Porites 0.2 2 1-9-03  

MVI03-2c 9°29.744’S 120°5.744’E Porites 0.39 3 1-9-03  

MVI03-3a 9°29.741’S 120°5.741’E Porites 0.15 1 1-9-03  

MVI03-3b 9°29.741’S 120°5.741’E Porites 0.35 1 1-9-03  

MVI03-4 9°29.471’S 120°5.742’E Porites 0.34 6 1-9-03  

MVI03-5a 9°29.739’S 120°5.738’E Porites 0.52 5 2-9-03  

MVI03-5b 9°29.739’S 120°5.738’E Porites 0.37 3 2-9-03  
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MVI03-6a 9°29.741’S 120°5.745’E Porites 0.33 2 2-9-03  

MVI03-6b 9°29.741’S 120°5.745’E Porites 0.28 2 2-9-03  

MVI03-6c 9°29.741’S 120°5.745’E Porites 0.48 2 2-9-03  

MVI03-6d 9°29.741’S 120°5.745’E Porites 0.57 2 2-9-03  

MVI03-7a 9°29.731’S 120°5.746’E Porites 0.66 4 2-9-03 Good quality 

MVI03-7b 9°29.731’S 120°5.746’E Porites 0.32 2 2-9-03  

MVI03-7c 9°29.731’S 120°5.746’E Porites 0.55 2 2-9-03 Good quality 

Mondu II 

reef 

MII03-2a 9°29.756’S 120°5.857’E Porites 0.36 1 3-9-03  

MII03-2b 9°29.756’S 120°5.857’E Porites 0.35 1 3-9-03  

Mondu VII 

reef 

MVII03-1a 9°29.744’S 120°5.679’E Porites 0.75 3 2-9-03  

MVII03-1b 9°29.744’S 120°5.679’E Porites 0.66 3 2-9-03  

MVII03-2a 9°29.694’S 120°5.714’E Porites 0.76 3 3-9-03  

MVII03-2b 9°29.694’S 120°5.714’E Porites 0.4 1 3-9-03  

 



Appendices 

302                                  The Australian National University 

 

APPENDIX  B 

RESULTS OF RADIOCARBON ANALYSIS OF SUMBA CORALS 

 Sample 14C (‰) δ13C (‰) D14C (‰) 
Conventional 14C age 

(yr BP) 

Holocene 

Corals 

RS4.2 -200.6±4.6 -1.9±0.2 -237.5±4.4 2180±50 

RS13 -301.8±4.4 -1.2±2 -335±5.1 3280±70 

RS8 -345.9±4.1 -1.1±2 -377.2±4.7 3800±70 

MS7 -354.2±4.1 -0.3±0.2 -386.1±3.9 3920±60 

RS2 -358.8±4.5 0±2 -390.9±5 3980±70 

RS10 -396.2±3.9 0±2 -426.3±4.4 4460±70 

RS3 -396.5±4.3 0±2 -426.7±4.8 4470±70 

PS-1C -402.6±3.3 0±2 -432.5±4 4550±60 

MS1b -406.9±3.9 -0.8±0.2 -435.7±3.7 4600±60 

RS5b -419±4.9 0±2 -448.1±5.2 4780±80 

BS-3C -459.8±3.2 0±2 -486.8±3.7 5360±60 

Late 

Pleistocene 

Coral 

GC-6C -981.6±0.8 0±2 -982.5±0.7 32490±340 

 

The conventional radiocarbon measurements of Sumba corals were carried out by Abaz 

Alimanovic at the RSES Radiocarbon Dating Laboratory of the Australian National 

University. 
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APPENDIX  C 

RESULTS OF U-TH ANALYSES OF SOME OF SUMBA CORALS 

 Sample U (ppm) (230/238)act 234U(t) 234U(initial) (230/232)act Age (cal. yr)  

Modern 

Corals 

RSM 4 (top) 2.5916 0.0020 146.1 146.2±2.8 81±2 193±3 

RSM 4 (base) 2.6634 0.0040 144.9 145.0±3.8 208±12 384±9 

RSM3 (top) 2.5963 0.0039 146.9 147.1±4.6 158±4 366±8 

RSM 3 (base) 2.4775 0.0048 149.8 150.0±3.1 142±2 455±5 

Holocene 

Corals 

RS 2 2.2025 0.0381 144.3 145.8±3.3 913±9 3676±43 

RS 2 2.6580 0.0389 148.3 149.9±2.3 922±60 3744±58 

RS2.2 2.5648 0.0384 145.5 147.0±2.2 515±8 3702±42 

MS 7 2.5285 0.0388 148.8 150.4±2.3 373±5 3732±42 

RS 3 2.8731 0.0450 143.2 144.9±2.3 430±7 4366±56 

MS-1b 2.7021 0.0489 146.1 148.1±2.4 651±6 4741±41 

RS 5b 2.9130 0.0496 149.7 151.8±2.5 2199±23 4791±40 

BS-3c 2.8430 0.0586 143.4 145.8±2.3 797.±4 5713±46 

Late 

Pleistocene 

Corals 

GC 6c 3.0077 1.3298 161.0  31471±294  

MI 6D 6.5919 0.6233 100.9 129.9±4.0 40140±215 89320±86 

MII 2c 3.0969 1.3435 223.4  12744±115  

MIV 2 2.9392 0.7604 115.7 162.9±3.2 6555±108 120800±1300 

 

These early-stage uranium-series measurements were conducted by Dr Linda Ayliffe 

using the thermal ionisation mass spectrometer at the Laboratoire des Sciences du 

Climat et de l’Environnement, Gif-sur-Yvette Cedex, France. 
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APPENDIX  D 

Sr/Ca ANALYSIS 

High precision Sr/Ca measurements were performed using thermal ionization mass 

spectrometry. Coral samples of approximately 100 μg were diluted in 0.5 M HNO3 and 

an aliquot containing approximately 4 μg Ca was taken. This aliquot was then spiked 

with a Sr-Ca isotope laboratory standard and loaded onto a Ta filament. Sr/Ca ratios 

were measured using a MAT-261 thermal ionization multiple-collector (7 cups) mass 

spectrometer by Heather Scott-Gagan at the Australian National University. 

calendar Year
87 88 89 90 91 92 93 94 95

S
r/

C
a 

S
S

T
 (

o C
)

24

25

26

27

28

29

30

31

Nominal Year
3 4 5 6 7 8 9 101 2 3 4 5 6

S
r/

C
a 

S
S

T
 (

o C
)

24

25

26

27

28

29

30

31

4.8 ka
RS5b

5.7 ka
BS3a

0 ka
SU1

 

Figure A.1    Comparison of Sa/Ca SST between modern Porites coral SU1 and Holocene Porites corals from 

Mondu village in Sumba, Indonesia. The calibration equation between Sr/Ca ratios and SST values is SST = 168.2 – 

15674 × Sr/Ca atomic based on Gagan et al. [1998]. 
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APPENDIX  E 

DIAGENETIC EFFECT OF ABIOTIC ARAGONITE ON 18O AND 

13C OF HOLOCENE PORITES CORAL MS7 

E.1  Background 

Biogenetic coral aragonite is subject to post-depositional diagenetic alteration both in 

the marine and vadose environments [James, 1974; Bathurst, 1975; Hubbard and Swart, 

1982; Aissaoui et al., 1986; Constanz, 1986; Martin et al., 1986; Purser and Schroeder, 

1986; Potthast, 1992; Bar-Matthews et al., 1993; Stein et al., 1993; Tribble, 1993], and 

exchange and removal of elements and isotopes during the diagenetic processes have 

been concerned to be potential to affect the veracity of coral proxies as important tools 

in paleoclimate and hydrological reconstruction [Guilderson et al., 1994; McCulloch et 

al., 1996; Esat et al., 1999; Hughen et al., 1999; Woodroffe and Gagan, 2000; 

Guilderson et al., 2001; Tudhope et al., 2001; Felis et al., 2004; Brachert et al., 2006].  

Several recent studies have investigated the paleoclimate implications of these 

diagenetic transformations [Enmar et al., 2000; Muller et al., 2001; McGregor and 

Gagan, 2003; Muller et al., 2004; Quinn and Taylor, 2006]. McGregor and Gagan 

[McGregor and Gagan, 2003] found that diagenetic transformation of primary aragonite 

to calcite or addition of calcite of calcite cements in environments with meteroric water 

involves a negative shift in the Sr/Ca ratio, 18O and 13C composition of the 

diagenetically altered corals, which is consistent with early observations [Siegel, 1960; 

Martin et al., 1986; Stein et al., 1993; Zhu et al., 1994; Wei et al., 1998]. They further 

showed that lower Sr/Ca and 18O in diagenetically altered coral would produce up to 

1.5 and 0.2 oC warmer SST artefacts for paleotemperature reconstruction, respectively 

[McGregor and Gagan, 2003]. Recent researches indicated that secondary aragonite 



Appendices 

306                                  The Australian National University 

A

C

B

75 mm occurred in early marine diagenesis would bring on significant shift toward 

higher coral Sr/Ca, 18O and 13C relative to pristine corals [Enmar et al., 

2000; Muller et al., 2001; Muller et al., 2004; Gallup et al., 2006; Quinn 

and Taylor, 2006] and conversion of these altered coral Sr/Ca and 18O to 

SST using standard equations yielded temperature estimates that was ~4-5 

oC  [Muller et al., 2001] or 2.5 (18O-SST) or 6 oC (Sr/Ca-SST) [Quinn 

and Taylor, 2006] cooler than that estimated from unaltered portion of the 

same core. 

Figure A.2 (left)   X-radiograph positive image of Holocene coral core MS7. White lines represent 

sub-sampling transects. Notice the density alteration in the lowermost section. Yellow box indicates 

petrographic thin-section area and yellow dots mark spots of optical microscopic images in Figure 

A.4. 

E.2  Coral skeletal petrological alteration 

A full suite of diagenetical screening techniques have been applied to 

ensure the veracity of the paleoclimate reconstruction from skeletal 

geochemical records of Holocene coral MS7. The top 10 cm of the core is 

discoloured and has not been used for any further geochemical analysis. 

There was no calcite observed under UV light for the whole MS7 core and 

X-ray diffraction (XRD) results confirmed that the MS7 core contains no 

significant calcite. X-radiograph of the 7-mm thick slab of the core, 

however, revealed that the lowermost part of the core contained a 10-cm 

section with physical evidence of alteration showing increased skeletal 

density (Figure A.2).  

The alteration in skeletal texture, density, and colour could also be observed 

by unaided eyes under natural light. Visual inspection of the petrographic 

thin-sections and scanning electron microscopy (SEM) images revealed that 

the physical alteration mainly resulted from infilling of secondary abiotic 
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aragonite needles in the pore space toward the base of the core (Figure A.3). 

 

Figure A.3   SEM images exhibiting overgrowth of secondary aragonite crystals projecting into the skeletal voids 

in the basal section of the Holocene coral core MS7 (Photos courtesy of Gavin Dunbar). 

X-radiographic image shows that coral skeletal density increases progressively toward 

the base of the core (Figure A.2). It might provide an opportunity for petrographic 

investigation on how the addition of secondary aragonite develops. To investigate the 

effect of abiotic aragonite on coral isotope proxies, measurement of coral 18O and 13C 

had been extended to the transition zone. A 65 mm by 25 mm petrographic thin-section 
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paralleling the geochemical sub-sampling transection C was employed (Figure A.2) and 

images every 15 mm paralleling the transection were shown in Figure A.4. 

 

Figure A.4 (next page)  Progressive process of coral aragonite diagenetic alteration and the effect of 

secondary aragonite on skeletal 18O of coral MS7 (3.7 ka). Right panel: optical microscopic (OM) images of coral 

petrographic thin-section in the diagenetic transformation transition zone parallelling the isotope sub-sampling 

transection III (positions of the thin-section and the OM images see Figure A.2). Spot A: top of the thin-section, 

exhibiting pristine coral skeleton. Notice the smooth septa walls, the radial-fibrous structure of aragonite fibres 

growing from a centre of calcification (black arrow), and the edgily micro-crannies (white arrow) in the centre of the 

aragonite skeleton. Spot B: 15 mm lower than spot A in the thin-section showing the start of the diagenetic alteration 

process including slight dissolution (double white arrow) of some part of the aragonite matrix and the slightly 

obscured radial-fibrous pattern and micro-crannies in the aragonite skeleton. Spot C: 15 mm lower than spot B in the 

thin-section showing further dissolution (double white arrow), much more obscured skeletal texture, and the 

occurrence of some fuzziness and thin selvages along the edges of the septa walls. The percentage of secondary 

aragonite is estimated to be 1~2%. Spot D: 15 mm lower than C spot in the thin-section exhibiting full covering of 

secondary aragonite needles (10 to 30 μm in size) on the surface of coral aragonite skeleton, secondary aragonite 

replacement of the primary skeletal aragonite, large patches of dissolution (double black arrow), and obscurity or 

disappearance of primary coral textures. The percentage of secondary aragonite is estimated to be 10~15%. Spot E: 

bottom of the thin-section showing bigger secondary aragonite crystal (50 to 80 μm in size) covering of voids and 

replacement of the primary skeletal aragonite, increasing dissolution of biotic aragonite, and further obscurity or 

complete disappearance of primary coral textures. The percentage of secondary aragonite is estimated to be 30~40%. 

Left panel: unresampled 18O of the core basal section. Shaded areas shows 18O sections closely linked to the 

presence of secondary aragonite. 

Thin-section observation showed that the diagenetic alteration occurred progressively 

toward the base of the core within 6 cm distance from pristine biotic aragonite to 

severely altered aragonite skeleton and large amount of overgrowth of abiotic aragonite. 

In the top of the thin-section (Figure A.4 right panel-A), the coral shows all the skeletal 

features of modern corals including well-defined septa walls, the radial-fibrous structure 

of aragonite fibres growing from a centre of calcification, the edgily micro-crannies in 

the aragonite matrix, absence of void filling or cement formation, and no evidence of 

replacement of calcite or secondary aragonite. At this spot, the OM image shows no 

difference with any OM images from the upper part of the core. All in all, petrographic 

observation has proven excellent preservation above this spot for this 3.7 ka coral core. 
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Even though the OM observation shows the coral in B spot is still in a good condition 

by preservation, the diagenesis has started because of the increased dissolution of 

primary aragonite (Figure A.4 right panel-B). From this spot toward the core base, the 

following three aspects of alteration happened progressively (Figure A.4 right panel-B, 

C, D, E): 

a. Increasing dissolution of primary aragonite; 

b. Gradual obscuring of primary aragonite skeletal structures, such as the 

radial-fibrous structure of aragonite fibres, the centres of calcification, and the 

micro-crannies in the aragonite matrix; 

c. Progressive filling of the voids and replacement of primary skeletal aragonite 

with secondary aragonite needles and the gradual increase in the size of the 

secondary aragonite crystals. It was estimated by OM image observation that the 

percentages of the secondary aragonite in the altered coral matrix in spots C, D, 

and E are 1~2%, 10~15%, and 30~40%, respectively. 

E.3  Influence of secondary aragonite on coral 18O and 13C records 

Both 18O and 13C of the Holocene MS7 core exhibit large change in the basal sections 

(Figure A.5, dark shaded area). Big shifts toward higher values of isotope composition 

(0.25‰ for 18O and 0.7‰ for 13C) compared with the neighbouring annual cycles 

are evident and the high values of the basal parts (dark shaded area) are much higher 

than any other part of the whole 18O and 13C records, implying that the geochemical 

variations seems not to be the result of any climate or environmental change.  

Detailed petrographic research along the geochemical sub-sampling transect disclosed 

that the 18O and 13C variations were closely linked to presence of the secondary 

aragonite (Figure A.4). The combination of petrographic observation and geochemical 

measurement confirms the following observations: 
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 The altered coral 18O record still shows clear annual cycle, as shown by the dark 

shaded part of the coral 18O record in Figure A.4. 

 Limited dissolution of primary aragonite did not produce distinguishable change 

in coral 18O records, as shown by OM image B in Figure 5.4 and the 

corresponding 18O; 
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Figure A.5   Skeletal 18O (red) and 13C (blue) versus distance from core top of Holocene coral MS7. The shaded 

areas indicate 18O and 13C sections closely linked to the presence of secondary aragonite. 

 Even a small amount of secondary aragonite could produce relatively “large” 

shift toward higher 18O values, indicative of sensitivity of coral 18O (and 13C) 

to subtle infilling and replacement of original coral matrix by secondary aragonite 

in the marine environment. Even though there is only 1~2% secondary aragonite 

in spot C, the 18O seemed to have shifted to higher value since the early part of 
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the summer 18O has the highest summer value in the whole record. The first 

winter (higher 18O values between spots C and D in Figure A.4) has an average 

shift of 0.24‰ in 18O from the subsequent winter (between spots B and C) 

which has had a high average value among all the winters of this record (see 

Figure A.5), and the percentage of the secondary aragonite in the spot of the first 

winter should be less than 10% because of the progressive development of the 

diagenesis. Recent result of Quin and Taylor [Quinn and Taylor, 2006] indicated 

that 20% of secondary aragonite could bring a shift of 0.5‰ higher 18O value. 

So it is reasonable to attribute most of the 0.24‰ shift in the first winter 18O to 

secondary aragonite alteration. According to a 18O-SST dependence of -0.189‰/ 

oC, the 18O shift of 0.24‰ could be converted to 1.3 oC cooler in SST. 

The diagenetic alteration of coral 18O and 13C for the first annual cycle has been 

confirmed, but it is not so obvious for the second annual cycle. Higher 18O and 13C 

both in summer and winter for the second annual cycle have been observed, but the 

magnitudes are not big enough to distinguish them from other winter or summer 

interannual changes (see Figure A.5). Most of the second annual cycle is located 

between spots B and C (Figure A.4) and the presence of aragonite in that section should 

be 0~1%. Analysis of interannual variability of the MS7 coral 18O seems to support 

that coral 18O from this section had been altered, at least the early part of the second 

annual cycle. 

The interannual variability of the MS7 coral 18O has been shown in Figure A.6. Since 

the coral 18O still has clear annual cycles in the diagenetic transition zone and the 

extension rates of 15.6 mm for the first two year bands are similar to the average rate in 

the younger section, the same chronology of the younger section has been employed to 

these two cycles to investigate the influence of secondary aragonite on the interannual 

variability of coral 18O. 
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Figure A.6  Effect of secondary aragonite on the interannual variability of 18O record for the Holocene coral 

MS7. The interannual variability is expressed as the 18O which is the absolute value of the difference between the 

average 18O value of this year and the subsequent year for specified periods, such as winter, summer, year or annual 

cycle. Red bars referred as diagenetically altered coral 18O. Dotted black lines are average values of the 18Os 

and dashed grey lines are upper control lines of 3 standard deviation. 

Figure A.6 exhibits evidently increased difference of 18O between neighbouring years 

during the first two annual cycles (red bars in Figure A.6). The 18Os of the first two 

annual cycles are 3 to 4 times of the averages of the whole core. Large 18O in both 

the first two winters might reflect the progressive addition of secondary aragonite. Even 

though the interannual variability of the winter and summer means in the second annual 

cycle is 3 times of the average level of the whole record, the year 2 (the second annual 
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cycle) is not distinguished among some years with high variation of winter and summer 

mean 18O (Figure A.6 A and B). However, this year could be distinguished among all 

the other years in the whole record by the high variations in annual mean and annual 

cycle mean 18Os which are 4 times of the averages and out of the 3 standard deviation 

(Figure A.6 C and D).  

This result shows that variation in interannual variability of coral 18O annual mean or 

annual cycle mean could serve as tools to help recognize diagenetic alteration of coral 

climate proxies, even very subtle alteration that is not so easy to be discerned by shift in 

winter or summer isotopic values. 

This study demonstrates that clear annual cycles and small shifts from “normal” values 

of coral proxy records do not ensure the pristine nature of the corals. Even subtle 

alteration in coral skeleton, such as presence of as low as 1% of secondary aragonite, 

could bring large shifts in interannual variability of coral proxies which have extensive 

application in recognition of important historical climate events, such as ENSO, and is 

the base for understanding their vicissitudes by spectral analysis. Careful diagenesis 

screening should be performed before reconstructing paleoclimate using coral. And this 

study shows, even subtle diagenetical alteration in coral could be detected by 

combination of X-radiograph, petrographic observation, and analysis of interannual 

variability of coral proxies， and thereby the influence of diagenesis on coral 

reconstruction of paleoclimate and paleoceanography could be decreased to minimum. 

The first two annual cycles in the Holocene coral MS7 were not used in climate 

reconstruction because of diagenetic alteration.
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